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ABSTRACT

Any multivariate distribution can be uniquely decomposed into marginal (one-point) distributions, and a function
called the copula, which contains all of the information on correlations between the distributions. The copula pro-
vides an important new methodology for analyzing the density field in large-scale structure. We derive the empirical
two-point copula for the evolved dark matter density field. We find that this empirical copula is well approximated
by a Gaussian copula. We consider the possibility that the full n-point copula is also Gaussian and describe some
of the consequences of this hypothesis. Future directions for investigation are discussed.
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1. INTRODUCTION

The standard model for the formation of large-scale structure
assumes that the universe at high redshift contained a dark
matter density field characterized by a multivariate Gaussian
distribution. This density field evolved, under the action of
gravity, into a highly non-Gaussian dark matter density field,
with the present-day observed distribution of galaxies tracing
(in a biased fashion) the underlying dark matter.

Many tools have been developed to characterize the final
evolved distribution of matter. The most widely used are the
n-point correlation functions (Peebles 1980). When applied to a
discrete density field (such as the observed galaxy distribution),
they give the probability (in excess of random) of observing
galaxies at a set of n points in a fixed geometrical configuration
relative to each other. For a continuous density field (such as
the theoretical dark matter distribution), these n-point functions
can be expressed in terms of the density field measured at n
points at a fixed relative separation. The knowledge of all of
the correlation functions up to arbitrarily large n completely
characterizes a given density field or galaxy distribution.

The problem is that in practice, it is impossible to measure
correlation functions to arbitrarily high order. The two-point
correlation function is known to very high accuracy, and the
three-point function of the distribution of galaxies is also well
measured. However, precise measurements of the four-point cor-
relation function or any higher orders are difficult or impossible
for current data. Although the two- and three-point correlation
functions provide a great deal of information about the galaxy
distribution, we are left with an incomplete characterization of
this distribution.

Attempts have been made, therefore, to slice the information
contained in the density field (or in the distribution of galaxies)
in different ways. For example, the void probability function
(White 1979; Fry et al. 1988) mixes together information from
correlation functions of all orders, as do percolation statistics
(Zel’dovich 1982; Shandarin 1983; Sahni et al. 1997). Similarly,
the one-point probability distribution function (PDF) has been
widely explored (Coles & Jones 1991; Kofman et al. 1994;
Protogeros & Scherrer 1997; Scherrer & Gaztanaga 2001; Lam
& Sheth 2008); it also samples the information in the density
field in a different way from the correlation functions. However,
none of these statistics provides a complete description of the
density field; they all sample only part of the information.

In the case of the one-point PDF, however, it is possible
to introduce a new statistical tool, the copula, which provides
the rest of the information contained in the density field. The
copula and the one-point PDF together completely characterize
the density distribution, and this decomposition is unique for
any multivariate density field. Roughly speaking, the copula
indicates how the one-point PDFs are joined together to give
the n-point PDF.

The copula was first defined and characterized by Sklar
(1959), and it has been most widely applied in the field
of mathematical finance. In fact, misuse of the copula has
been blamed for the recent meltdown in the mortgage-backed
securities industry. The copula has been used in various areas
of engineering, especially hydrology (Genest & Favre 2007),
but it has not been widely applied in astronomy or astrophysics
(although see the recent papers by Jiang et al. 2009 and Benabed
et al. 2009). To our knowledge, this Letter represents the first
application to the analysis of large-scale structure.

In the next section, we review the definition and properties
of the copula. In Section 3, we apply the copula methodology
to a simulated dark matter density field in the standard ΛCDM
cosmology. We find that the two-point copula of the evolved
density field is well approximated by a Gaussian copula. This
has several interesting consequences, which are elucidated in
Section 4. Since our main purpose in this Letter is to introduce
this technique into the field of large-scale structure, we defer
more detailed investigations to a later paper.

2. WHAT IS A COPULA?

The discussion in this section is taken primarily from Nelson
(1999), Malevergne & Sornette (2003), and Genest & Favre
(2007). Note that the terminology in the statistics literature tends
to differ slightly from that used in cosmology; we will use the
latter terminology here.

Consider the PDF of the distribution of densities at n
points, r1, r2, . . . , rn. We will denote this n-point PDF as
pn(δ1, δ2, . . . , δn). As noted in the previous section, a great deal
of work has been devoted to the investigation of the one-point
distribution, p(δ). The copula is a function that provides all of the
remaining information necessary to construct the n-point PDF,
once this one-point PDF is known. Hence, it couples together
the individual one-point PDFs to produce the full n-point PDF;
this is the origin of the term “copula.” Since the statistics of
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density fields in large-scale structure are translation-invariant,
all of our one-point PDFs will be identically the same, but this
need not be the case for the general definition of the copula.

The copula is defined in terms of the n-point cumulative
distribution function (CDF) rather than PDF. Recall that the
n-point CDF, Pn(δ1, δ2, . . . , δn), is defined as

Pn(δ1, δ2, . . . , δn) =
∫ δ1

−∞

∫ δ2

−∞
· · ·

∫ δn

−∞
p(̃δ1, δ̃2, . . . , δ̃n)

× dδ̃1dδ̃2 · · · dδ̃n, (1)

and the definition of the one-point CDF is just

P (δ) =
∫ δ

−∞
p(̃δ)dδ̃. (2)

(We follow the standard convention of lower-case symbols for
PDFs and upper-case symbols for CDFs.) Then the copula
function C(u1, u2, . . . , un) is the unique function that satisfies
the relation

Pn(δ1, δ2, . . . , δn) = C(P (δ1), P (δ2), . . . , P (δn)). (3)

Since we are describing a cosmological density field, we can
take all of the one-point CDFs on the right-hand side to be the
same, but this is not the most general definition of the copula.
Sklar’s (1959) theorem states that a function satisfying Equation
(3) always exists and that it is unique. Hence, the n-point copula
and the one-point PDF completely characterize the n-point PDF
of the density field.

It might appear that we have gained nothing from this ex-
ercise, since we have simply replaced an infinite hierarchy of
correlation functions with an infinite hierarchy of copula func-
tions. However, this is not the case. The n-point copula function
contains significantly more information than the corresponding
n-point correlation function. In the next section, for example, we
characterize the two-point copula for a simulated evolved den-
sity field. The information in the two-point copula, along with
the one-point PDF, completely characterizes the two-point den-
sity distribution function, p(δ1, δ2), which cannot be determined
solely from the knowledge of the two-point correlation function
and the one-point PDF. A number of interesting conclusions can
be drawn from the two-point copula alone.

Since CDFs vary between 0 and 1, the copula function maps
an n-dimensional unit cube onto the unit interval. From the
general properties of CDFs, it follows that C(u1, u2, . . . , un) =
0 when any single ui is 0, and C(1, 1, . . . , ui, . . . , 1) = ui .

The copula has an additional important property that we will
exploit several times. Consider a density field δ1, δ2, . . . , δn,
and a second density field obtained by a local monotonic
transformation on the first one: f1(δ1), f2(δ2), . . . , fn(δn). Then
these two density fields have the same copula. Note that the
functions f1, f2, . . . , fn do not have to be the same; all that
is required is that each function be a monotonic increasing
function. For instance, suppose we begin with a Gaussian
density field and exponentiate each δ to produce a log-normal
density field (Coles & Jones 1991). Then the initial Gaussian
density field and the corresponding log-normal density field
have the same copula; the difference between them is determined
entirely by the one-point PDF.

For simplicity, we will now confine our attention to two-
point copulas, C(u, v), with 0 � u � 1, 0 � v � 1, and
0 � C(u, v) � 1. There are several special cases of interest.

First consider the case of two uncorrelated densities, δ1 and δ2.
In this case, p(δ1, δ2) = p(δ1)p(δ2), so the copula is just

C(u, v) = uv. (4)

Since we will be dealing with Gaussian initial conditions, a
second important copula will be the Gaussian copula (see, e.g.,
Malevergne & Sornette 2003) given by

Cr (u, v) = Φr [Φ−1(u), Φ−1(v)]. (5)

Here Φr is the two-point Gaussian CDF with unit variance and
correlation r:

Φr (δ1, δ2) = 1

2π
√

1 − r2

×
∫ δ1

−∞

∫ δ2

−∞
exp

(
− 1

2(1 − r2)
(δ2

1 + δ2
2 − 2rδ1δ2)

)
,

(6)

while Φ−1 is the inverse of the one-point Gaussian CDF with
unit variance.

A Gaussian density field (such as that assumed for the initial
conditions for large-scale structure) has both a Gaussian copula
and a Gaussian one-point distribution. However, it is possible
for a non-Gaussian density field to have a Gaussian copula
(e.g., any local monotonic transformation on a Gaussian field,
such as the lognormal model discussed above), and it is also
possible for a field to have a Gaussian one-point distribution and
a non-Gaussian copula. In the latter case, the copula formalism
provides a convenient way to generate a variety of non-Gaussian
fields with Gaussian one-point PDFs (Nelson 1999).

3. THE COPULA OF THE NONLINEAR DENSITY FIELD

Armed with the results of the previous section, we now
examine an evolved nonlinear density field. Using the standard
ΛCDM model, we analyze the mass distribution from a high
resolution N-body simulation from the LasDamas project (C. K.
McBride et al. 2009, in preparation). The simulation was run
with 14003 particles in a box of side length 420 h−1 Mpc,
and a flat cosmology specified by Ωm = 0.25, ΩΛ = 0.75,
Ho = 70 km s−1 Mpc−1, σ8 = 0.8, ns = 1.0. We sample
the density field at redshift zero using a spherical top hat of
radius 1 h−1 Mpc, corresponding to a highly nonlinear density
field. Given the resolution of the simulation, the mean number
of particles per sphere is 160. The evolved one-point PDF is
shown in Figure 1; it is highly non-Gaussian. To determine
the two-point copula, we sample pairs of points separated by
2 h−1 Mpc and 6 h−1 Mpc, respectively. Our goal is to measure
the copula for both ξ < 1 and ξ > 1, and we find that the two-
point correlation of dark matter particles at these separations
is ξ (2 h−1 Mpc) = 6.63 and ξ (6 h−1 Mpc) = 0.873. At much
larger separations, where ξ � 1, the densities at the two points
are essentially uncorrelated, and the copula simply takes the
form in Equation (4).

We sample 163,216 pairs of densities at each of the two
separations. We then use these density pairs to derive the
“empirical copula,” using the procedure outlined in Genest &
Favre (2007). We exploit the fact that the copula is unchanged
if we make a local monotonic transformation on the density
field. The particular monotonic transformation we make on each
of our two columns of densities is to replace each density by
its rank within its own column, R(δi). Thus, a given density
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Figure 1. One-point PDF of our density field, sampled with a spherical top-hat
window function of radius 1 h−1 Mpc.

pair, δ1, δ2, is mapped to R1(δ1), R2(δ2), where the ranking is
determined separately for each column of densities. Then we
divide by the number of pairs of points, n = 163,216, to give
R1(δ1)/n,R2(δ2)/n. It is easy to see that the distribution of
ranks divided by the number of ranked points has a uniform
CDF. Hence, for our new distribution, the right-hand side of
Equation (3) has P (R1(δ1)/n) = R1(δ1/n), P (R2(δ2)/n) =
R2(δ2/n), and the equation becomes

P (R1(δ1)/n,R2(δ2)/n) = C(R1(δ1)/n,R2(δ2)/n). (7)

In other words, the two-point distribution obtained by replacing
each density with its rank (divided by the number of points) is
the two-point copula. The copula obtained in this way is called
the empirical copula.

We have used our sampled pairs of points to derive the
empirical copula for both separations. Since the two-point
copula is a mapping from [0, 1] × [0, 1] into [0, 1], we have
chosen to display the copulas as contour plots in Figures 2
and 3. This empirical two-point copula, displayed as a solid
contour, is the main result of this Letter; along with the one-
point PDF for the density, it provides a complete description of
the two-point density distribution at the given separation.

However, we can go further and ask if the empirical copula
corresponds to any simple functional behavior. Since the initial
copula is Gaussian, the obvious choice is the Gaussian copula
given by Equation (5). This raises an obvious question: what
value of r do we assume for our theoretical Gaussian copula?
This value of r will not, in general, correspond to the normalized
two-point correlation function of the density field, ξ/σ 2, since
the latter also depends on the specific one-point PDF. Instead,
we follow Genest & Favre (2007) to compute Spearman’s ρ for
the data and convert this into the value of r for a corresponding
Gaussian.

Spearman’s ρ is essentially the correlation function for the
data ranks. Let R1i and R2i be the ranks of the ith data point in
each of our two columns of data. Then Spearman’s ρ for our n
pairs of data points is defined as

ρ =
∑n

i=1(R1i − R̄)(R2i − R̄)√
(
∑n

i=1(R1i − R̄)2)(
∑n

i=1(R2i − R̄)2)
. (8)

Here R̄ is the mean value of the rank, which is, of course,
R̄ = (n + 1)/2. The value of ρ is related to an integral over the

Figure 2. Empirical two-point copula C(u, v) for a simulated dark matter density
distribution at a separation of 2 h−1 Mpc. Solid curves are the contours corre-
sponding to (from lower left to upper right) C(u, v) = 0.1, 0.3, 0.5, 0.7, 0.9.
Dashed curves give the Gaussian copula with the value of r corresponding to
Spearman’s ρ calculated for the data.

Figure 3. As Figure 2, for a separation of 6 h−1 Mpc.

copula (Nelson 1999; Genest & Favre 2007):

ρ = 12
∫ 1

u=0

∫ 1

v=0
C(u, v)dudv − 3. (9)

For a Gaussian copula, the relation between Spearman’s ρ and
the value of r that appears in Equation (6) is (Kruskal 1958;
Genest & Favre 2007)

r = 2 sin(πρ/6). (10)

The values of ρ for our data are ρ(2 h−1 Mpc) = 0.474 and
ρ(6 h−1 Mpc) = 0.139, which correspond to r(2 h−1 Mpc) =
0.491 and r(6 h−1 Mpc) = 0.146. Using these values for r, and
Equations (5) and (6), we have constructed the Gaussian copulas
that should provide the best fit to the empirical copulas, if the
latter are indeed Gaussian. These are displayed in Figures 2
and 3. The Gaussian copulas appear to match the empirical
copulas in both cases.

4. DISCUSSION

Our results indicate that the two-point copula for the present-
day dark matter density field is well approximated by a Gaussian
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copula. This result, along with the knowledge of the one-point
PDF, is sufficient to completely characterize p(δ1, δ2). The most
obvious open question is then whether all of the higher-order
copulas are also Gaussian; we will defer the investigation of
this Gaussian copula hypothesis (GCH) to a future paper. If the
GCH were true, it would imply that the nonlinear density field
could be derived by a local transformation of an underlying
Gaussian field, an idea which has been explored in the past (see,
e.g., Coles & Jones 1991). Note, however, that this does not
imply that the evolved density field is a local transformation of
the original Gaussian dark matter density field; the Gaussian
field that is locally mapped to produce the final density field
could be some other Gaussian density field. But the GCH would
imply that all of the non-Gaussian information in the nonlinear
density field could be derived in terms of the one-point PDF.
For example, all of the higher-order correlation functions would
depend only on this PDF.

These arguments are related to the Gaussianization process
of Weinberg (1992). Weinberg explored the possibility that
gravitational evolution preserves the rank order of the density
field, so that mapping the nonlinear density field monotonically
onto a Gaussian field would reproduce the initial density field.
It is clear that this process changes only the one-point PDF
and leaves the copula unchanged. The results on reconstruction
were somewhat mixed; while there is a reasonable correlation
between the initial density field and the reconstructed density
field, the correspondence is certainly not exact (Narayanan &
Croft 1999). However, this result does not contradict the GCH;
as noted above, there is no reason to assume that the Gaussian
field that is locally transformed into the final density field is
identical to the initial Gaussian density field. In fact, the two
Gaussian fields could even have different values for r (see also
the discussions of Pando et al. 2001 and Neyrinck et al. 2009 on
these issues).

A more direct constraint on the GCH comes from measures
of topology (Doroshkevich 1970; Hamilton et al. 1986; Gott
et al. 1987; Weinberg et al. 1987; Melott et al. 1988), or more
generally, Minkowski functionals (Mecke et al. 1994; Kerscher
et al. 1997). When the independent variable in these calculations
is taken to be the volume filling factor, rather than the density
threshold, then such statistics effectively divide out the effect
of the one-point PDF; therefore, they can depend only on the
behavior of the copula (see, e.g., Shandarin 2002 for a detailed
discussion of this point). For the case of topology, the GCH then
implies that the genus curve of the nonlinear evolved density
field will have the shape characteristic of a Gaussian density field
(unlike the case of Gaussianization, this result does not depend
on the Gaussian copula matching the initial Gaussian density
field). This was claimed to be the case in the first simulations
of topology (Weinberg et al. 1987; Melott et al. 1988). More
recent simulations (Park et al. 2005; Kim et al. 2009) indicate
that the genus curve retains its Gaussian shape for moderate
smoothing lengths, but it clearly departs from Gaussianity (in
terms of the “shift parameter,” which is the relevant quantity
here) on the highly nonlinear length scale we have examined
(1 h−1 Mpc). These results argue against the GCH on nonlinear
scales. Clearly, the higher-order copula functions are worthy of
further study.

Of course, we actually observe the distribution of galaxies,
and not dark matter. The discussion in the previous sections
shows that for biasing schemes that are local and monotonic
(such as those explored by Coles 1993; Fry & Gaztanaga 1993;
Scherrer & Weinberg 1998; Coles et al. 1999; Narayanan et al.

2000) the copula of the galaxy distribution will be identical to
the copula of the underlying dark matter density field. This will
not necessarily be the case for non-local bias, or stochastic bias
(Dekel & Lahav 1999). The best current models include some
degree of stochastic bias; what remains to be seen is the size of
the effect on the copula.

This short introductory Letter leaves open a number of ques-
tions, several of which we are currently investigating. The most
important is whether the higher-order copulas of the density
field are also Gaussian. While it is obviously impossible to
examine this question to all orders, an investigation of the three-
point copula is straightforward and should provide a useful
check. Other directions for future investigation are the effects of
non-local or stochastic bias, redshift distortions, and the copula
of the observed galaxy distribution.

We believe that the copula has the potential to serve as an
important new tool in the analysis of large-scale structure. It ap-
pears to be less sensitive to bias (e.g., completely unaffected by
local monotonic bias) than other statistics. If the GCH applies,
then the full density field can be completely characterized by a
single function (the one-point PDF) and a series of numerical
parameters (the correlations r for the copula as a function of
length scale). For example, in this case the hierarchical clus-
tering coefficients can be derived as functions of the one-point
PDF. Even if the GCH does not apply, the copula allows us to
measure the underlying “coupling” between the density field
at different points in an entirely new way, moving beyond the
limited information in the low-order correlation functions. The
copula can also be used to analyze the evolution of the density
field, via a computation of the two-point copula for the density
measured at the same points in the initial and final density fields.

We note in passing that it is precisely the Gaussian copula
which has been blamed for the recent mortage-backed securities
meltdown. We presume that any error in this Letter will have
less dire consequences.

R.J.S. was supported in part by the Department of Energy
(DE-FG05-85ER40226). We thank D.H. Weinberg for helpful
discussions.
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