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Abstract
We experimentally measured the self-healing of the spatially inhomogeneous states of
polarization of vector Bessel beams. Radially and azimuthally polarized vector Bessel beams
were experimentally generated via a digital version of Durninʼs method, using a spatial light
modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and
spatially inhomogeneous states of polarization were experimentally measured using Stokes
polarimetry as they propagated through two disparate obstructions. It was found, similar to their
intensities, that their spatially inhomogeneous states of polarization self-healed. The self-healing
can be understood via geometric optics, i.e., the interference of the unobstructed conical rays in
the shadow region of the obstruction, and may have applications in, for example, optical
trapping.

Keywords: Bessel beams, vector beams, radial polarization, azimuthal polarization, optical
vortex, orbital angular momentum, self-healing

(Some figures may appear in colour only in the online journal)

A Bessel beam is a light beam that is a solution to the
Helmholtz wave equation, existing over a limited region of
propagation, and experimentally generated by the inter-
ference of conical rays [1, 2]. It possesses a property referred
to as ‘self-healing,’ i.e., its intensity reappears after propa-
gation through an obstruction. Self-healing can be simply
understood via geometric optics [3]. When a portion of a
Bessel beam is obstructed in one plane, the unobstructed
conical rays interfere in its shadow region in another plane,
as shown in figure 1(e). Due to this property, Bessel beams
have been extensively studied and have been used for a
number of applications; for comprehensive reviews see [4–

7]. For example, when using a Bessel beam for optical
trapping, it is possible to simultaneously trap multiple par-
ticles in well separated planes [8], and make particle tractor
beams [9–12].

A vector beam is a light beam possessing a spatially
inhomogeneous state of polarization such as radial or azi-
muthal polarization as shown in figures 2(b) and (c),
respectively. Vector beams have received significant interest
[13, 14], due in great part to their ability to produce stronger
longitudinal field components [15, 16], and smaller spot
sizes [17], as compared to scalar light beams, upon focusing
by high numerical aperture objectives. Also, when using
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vector beams for optical trapping, it is possible to improve
the axial and transverse stiffness of the optical trap via radial
and azimuthal polarization, respectively [18–20]. Most
recently, vector beams have been used for optical commu-
nication [21].

Like any other light beam a Bessel beam can have a
scalar (spatially homogeneous) or vector (spatially inhomo-
geneous) state of polarization [22, 23]. The great majority of
experimental investigations of Bessel beams concern scalar
Bessel beams. Yet, a vector Bessel beam possesses the
properties of a Bessel beam and a vector beam, as described
above, and may be used in comparable applications. For
example, it may be possible to improve the axial and trans-
verse stiffness of a tractor beam when using a vector Bessel
beam. While there are extensive studies on self-healing of
scalar Bessel beams, there are limited studies on self-healing
of vector Bessel beams [24–27], particularly with respect to

their spatially inhomogeneous states of polarization. Previous
work only measured the propagation and self-healing of the
intensities of vector Bessel beams.

In this work, we experimentally measured the self-heal-
ing of the spatially inhomogeneous states of polarization of
vector Bessel beams. Radially and azimuthally polarized
vector Bessel beams were experimentally generated via a
digital version of Durninʼs method, using a spatial light
modulator (SLM) in concert with a liquid crystal q-plate. As a
proof of principle, their intensities and spatially inhomoge-
neous states of polarization were experimentally measured
using Stokes polarimetry as they propagated through two
disparate obstructions.

A schematic of the experimental setup is shown in
figure 1. First, a scalar Bessel beam was generated following
Durninʼs method. In Durninʼs method, an annular slit is
placed in the back focal plane of a lens and illuminated with a

Figure 1. Experimental setup: (a) computer generated hologram (CGH) of an annular slit additionally superimposed with a linear grating
displayed on spatial light modulator (SLM). (b) Linear polarized annular ring of light before q-plate. (c) Schematic of =q 1 2 q-plate. (d)
Radially polarized annular ring of light after q-plate. (e) Schematic of vector Bessel beam propagation though an obstruction in the focal
region of LB. The intensity of the vector Bessel beam is shown at a propagation distance of roughly (I) 64 mm (unobstructed), (II) 82 mm
(obstructed), (III) 118 mm (semi-healed) and (IV) 136 mm (self-healed) after the Fourier transforming lens LB.
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collimated light beam resulting in an annular ring of light.
Each point along the annular ring acts as a point source which
the lens transforms into a good approximation to a Bessel
beam in its focal region [1, 2]. A digital method of Durninʼs
method was implemented [28]. An annular slit, additionally
superimposed with a linear grating, was created using a
computer generated hologram displayed on a reflective phase
only SLM (HoloEye) as shown in figure 1(a). A linear
polarized HeNe laser beam (λ ∼ 633 nm) was spatially fil-
tered by a single mode optical fiber, expanded, collimated by
a lens (L1), and then illuminated the SLM. The light at the
plane of the SLM was then spatially filtered by an aperture
(A) in the first diffraction order of a 4 f imaging system (L2
and L3), imaged onto the back focal plane of a 10 cm focal
length lens (LB), resulting in the linear polarized annular ring
of light shown in figure 1(b). A good approximation to a
scalar (linearly polarized) Bessel beam was formed in the
focal region of lens LB.

Next, the scalar (linearly polarized) Bessel beam was
converted into a vector Bessel beam. There are many methods
to generate vector beams including the use of metasurfaces
and optical fibers [29–32]. Here, we use a q-plate [33]. A q-
plate is a liquid crystal technology comprising of a thin layer
of liquid crystal molecules in-between two thin glass plates.
The orientation of the liquid crystal molecules is described by
ϕq , where ϕ is the azimuthal coordinate, and q is a half
integer. A =q 1 2 q-plate is schematically shown in
figure 1(c). Effectively, a q-plate is a half wave plate (HWP)
with an azimuthally varying fast axis that can be represented

by the Jones matrix [34]:

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ
ϕ ϕ

= −Q
q q
q q

ˆ cos 2 sin 2
sin 2 cos 2

. (1)

Using Jones calculus, it can be easily shown, for a =q 1 2 q-
plate, horizontal (vertical) polarization can be converted into
radial (azimuthal) polarization [35]. In general, a q-plate
converts any state of polarization on the Poincare sphere to a
higher-order state of polarization on the higher-order Poincare
sphere [36, 37]. The q-plate is also ‘tunable’; the amount of
the incident lightʼs power converted to radial or azimuthal
polarization is directly controlled, i.e., tuned, via a voltage
over the q-plate. For λ ∼ 633 nm, when the voltage over the
q-plate is ∼V 5o volts, no light will be converted to radial
(azimuthal) polarization, i.e., the light remains linear polar-
ized. When the voltage over the q-plate is ∼V 2.3v volts, all of
the incident lightʼs power will be converted to radial (azi-
muthal) polarization [38, 39].

The q-plate was placed close to the back focal plane of
lens LB. A linear polarizer (Pol) was placed just before the q-
plate to ensure the incident light was completely linear
polarized. A HWP was used to rotate the lightʼs polarization
horizontal (vertical). A signal generator generating a 1 kHz
square wave was used to apply a voltage over the q-plate.
When the voltage was Vo, a good approximation to a scalar
(linearly polarized) Bessel beam was generated in the focal
region of lens LB, as shown in figure 2(a). When the voltage
was Vv, and the lightʼs polarization was rotated horizontal
(vertical), a good approximation to a radial (azimuthal)
polarized vector Bessel beam was generated in the focal

Figure 2. Experimentally measured intensity of scalar (linearly polarized) and vector Bessel beams. (a) (First row) scalar Bessel beam. (b)
(Second row) radial polarization. (c) (Third row) azimuthal polarization. The columns show I0 (second column), I45 (third column), I90
(fourth column), I135 (fifth column) or each Bessel beam as described in the text.
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region of lens LB, as shown in figures 2(b) and (c). A 10X
microscope objective was used to image each Bessel beam in
the focal region of lens LB onto a CCD camera.

Stokes polarimetry was used to measure the state of
polarization of each Bessel beam [40, 41]. In Stokes polari-
metry, the Stokes parameters are measured via intensity
measurements and used to calculate the polarization orienta-
tion and polarization ellipticity at every spatial point of a light
beam. The first three Stokes parameters are given by [40, 41]:

ϕ ϕ ϕ= +S r I r I r( , ) ( , ) ( , ), (2)0 0 90

ϕ ϕ ϕ= −S r I r I r( , ) ( , ) ( , ), (3)1 0 90

ϕ ϕ ϕ= −S r I r I r( , ) ( , ) ( , ), (4)2 45 135

where ϕI r( , )0 , ϕI r( , )45 , ϕI r( , )90 , and ϕI r( , )135 are the
intensity of the light beam, at every spatial point, measured
after a linear polarizer whose transmission axis is rotated °0 ,

°45 , °90 , °135 , respectively. ϕr( , ) are cylindrical coordinates.
The total intensity of the light beam is given by ϕS r( , )0 and
the orientation of the state of polarization is given by [40, 41]:

⎛
⎝⎜

⎞
⎠⎟ψ ϕ

ϕ
ϕ

= −r
S r

S r
( , )

1

2
tan

( , )

( , )
. (5)1 2

1

A linear polarizer (Pol) was placed just before the CCD
camera in the experimental setup described above. The linear
polarizer was used to measure ϕI r( , )0 , ϕI r( , )45 , ϕI r( , )90 ,
and ϕI r( , )135 for each Bessel beam as shown in the respec-
tive columns of figure 2. While the third Stokes parameter, S3,
and therefore the polarization ellipticity, was not measured, as
shown in the experimental results, it is qualitatively enough to
visualize the self-healing of the spatially inhomogeneous state
of polarization of each vector Bessel beam via the polariza-
tion orientation.

Finally, each Bessel beam was made to propagate
through an obstruction. The results are shown in figure 3.
The obstruction was created by placing a pitted glass slide
possessing multiple, random, speckled, and opaque
obstructions in the path of the Bessel beam. The slideʼs
position was adjusted until an isolated and appropriately
sized obstruction was found. The size and position of the
obstruction was chosen such that it obstructed approxi-
mately a small portion of the Bessel beam near its center.
The obstruction is outlined by a dashed white line in
figure 3. The intensities and states of polarization of each
Bessel beam were measured via Stokes polarimetry, as
described above, at four propagation distances as they
propagated through the obstruction. The four propagation
distances are schematically shown in figure 1(e): (I) unob-
structed (II) obstructed (III) semi-healed (IV) self-healed.

ϕS r( , )0 is overlaid with ψ ϕr( , ) such that any change in
intensity and orientation of the state of polarization as the
Bessel beam propagates through the obstruction can be
visualized simultaneously; ϕS r( , )0 is encoded by relative
contrast, i.e., bright to dark, and ψ ϕr( , ) is encoded by
color.

The self-healing of the intensity and spatially inhomo-
geneous state of polarization of the scalar (linear polarized)
Bessel beam was experimentally measured as it propagated

through the obstruction. The results are shown in the first row
of figure 3(a). As can be seen, as the scalar Bessel beam
propagated through the obstruction from (I) to (IV), its
intensity self-heals as is expected [4–7]. Next, the self-healing
of the intensities and spatially inhomogeneous states of
polarizations of the radially and azimuthally polarized vector
Bessel beams were experimentally measured as they propa-
gated through the obstruction. The results are shown in the
second and third rows of figure 3(a), respectively. As the
radially and azimuthally polarized vector Bessel beam pro-
pagated through the obstruction from (I) to (IV), their inten-
sities self-healed similar to the scalar Bessel beam. As can be
seen, similar to their intensities, the spatially inhomogeneous
states of polarization of the radially and azimuthally polarized
vector Bessel beams also self-healed. This is the salient result
of this letter. There is qualitative agreement between the
spatially inhomogeneous states of polarization of the vector
Bessel beams when they are unobstructed at (I) and when
they self-heal at (IV).

Also, the self-healing of the intensities and spatially
inhomogeneous states of polarization of the radially and
azimuthally polarized vector Bessel beams were experimen-
tally measured as they propagated through a disparate
obstruction. The results are shown in figure 3(b). As shown in
figure 3(b), the size and position of this obstruction was
chosen such that it obstructed a larger portion of the vector
Bessel beams near their center. The obstruction is outlined by
a dashed white line. As can be seen, the intensities and the
spatially inhomogeneous states of polarization of the radially
and azimuthally polarized vector Bessel beams again self-heal
in the presence of the larger obstruction. Similar to the first
obstruction, there is qualitative agreement between the spa-
tially inhomogeneous states of polarization of the vector
Bessel beams when they are unobstructed at (I) and when
they self-heal at (IV).

Similar, to scalar Bessel beams, the self-healing of vector
Bessel beams can be understood via geometric optics, i.e., the
interference of conical rays in the shadow region of the
obstruction, as shown in figure 1(e). It is a well-known that
the distance in which a Bessel beam is able to reform is given
by [3]:

≈z
ak

k2
, (6)

z
min

where a is the width of the obstruction and k and kz are the
wave-vector and longitudinal wave-vector, respectively.
Equation (6) illustrates that the distance in which a Bessel
beam self-heals is dependent on the size and position of the
obstruction as well as the opening angle of the cone on which
the wave-vectors of the Bessel beam propagate. Here it is
assumed that the input field is larger than the obstruction.

There is a relationship between lightʼs space and polar-
ization degrees of freedom when light is scattered by an
obstruction, e.g. Rayleigh or Mie particles [42]. There are
comparable relationships in multimode optical fiber [43, 44].
In this respect, a more detailed theoretical analysis of self-
healing of the spatially inhomogeneous states of polarization
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of radially and azimuthally polarized vector Bessel beams,
analogous to that of scalar Bessel beams [3], is the subject of
future work. Nonetheless, as vector Bessel beams possess the
properties of Bessel beams and a vector beams, they may
have applications in, for example, optical trapping, where
self-healing and ‘vectorness’ are both needed, e.g. it may be
possible to the improve the axial and transverse stiffness of a
tractor beam when using a vector Bessel beam.

In conclusion, we experimentally measured the self-
healing of the spatially inhomogeneous states of polarization

of vector Bessel beams. Radially and azimuthally polarized
vector Bessel beams were experimentally generated via a
digital version of Durnin’s method, using an SLM in concert
with a liquid crystal q-plate. As a proof of principle, their
intensities and spatially inhomogeneous states of polarization
were measured using Stokes polarimetry as they propagated
through two disparate obstructions. It was found, similar to
their intensities, that their spatially inhomogeneous states of
polarization self-healed. The self-healing can be understood
via geometric optics, i.e., the interference of the unobstructed

Figure 3. Experimentally measured intensities and spatially inhomogeneous states of polarization of scalar (linearly polarized) and vector
Bessel beams as they propagated through two different obstructions at four different propagation distances. The obstruction is outlined by a
white dashed line. (Column I) unobstructed. (Column II) obstructed. (Column III) semi-healed. (Column IV) self-healed. The Bessel beams’
total intensities, ϕS r( , )0 , are encoded by relative contrast, and overlaid with the orientation of their states of polarization, ψ ϕr( , ), encoded
by color. (a) First obstruction (first row) scalar Bessel beam. (Second row) radial polarization (third row) azimuthal polarization. (b) Second
obstruction (first row) radial polarization. (Second row) azimuthal polarization.
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conical rays in the shadow region of the obstruction, and may
have applications in, for example, optical trapping.

While there are extensive studies on self-healing of scalar
Bessel beams [4–7], there are limited studies on self-healing
of vector Bessel beams [24–27], particularly with respect to
their spatially inhomogeneous states of polarization. Previous
work only measured the propagation and self-healing of the
intensities of vector Bessel beams. To our knowledge, this is
the first experimental measurement of the self-healing of the
spatially inhomogeneous states of polarization of radially and
azimuthally polarized vector Bessel beams. Future work
includes experimentally measuring the self-healing of the
spatially inhomogeneous states of polarization of other types
of vector Bessel beams such as full Poincaré beams [45]. In
contrast to radially and azimuthally polarized light beams, full
Poincaré beams experience non-trivial dynamics as they
propagate [46, 47].
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