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Abstract. This work mainly investigated the effect of thermal field on the crystallization 

kinetics of high-density polyethylene (HDPE) during injection molding (IM) process. The 

thickness X = 0.4 was found to be a crucial location heavily influenced by thermal conduction. 

The temperature decay tended to be stable, with limited variation of the crystallization rate 

when X > 0.4. It was observed that the crystallization rate was in good proportion to the 

cooling rate (). Our experimental finding showed that the consequence of relative crystallinity 

() was in agreement with that of the secondary temperature difference (STD). This study is 

practically significant to the further investigation on the relationship among 

“processing-structure-property” of polymeric materials. 

1. Introduction

The transient heat conduction problems (e.g., the ice formation), also referred to as the “Stefan 

problems” or “moving boundary problems”, were initially proposed by J. Stefan in 1981 [1]. 

Nowadays, issues of this kind still have practical significance in both engineering and industrial fields. 

Numerous methods have been proposed to numerically solve the multi-dimensional phase-change heat 

conduction problems, such as, the variational method [2, 3], the moving heat source method [4], the 

finite element method [5], the enthalpy method [6], the variable space-grid method [7, 8], the nodal 
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integral method [9], and so forth. 

Injection molding (IM) is one of the most commonly used fabricating techniques, accounting for 

about one third of all plastics processing [10, 11]. Generally speaking, an IM cycle consists of four 

stages, namely, filling, packing/holding, cooling and demolding (ejection) [12]. The product quality 

will also be considerably influenced by the operational parameters, mixing with another material, etc 

[13-15]. In spite of the significant improvement on modeling/simulation of the IM process of 

thermoplastic polymers over the past few decades, a reliable prediction of the viscoelastic response 

and microstructure development during real processing operation still remains challenging so far. In 

this study, the cooling stage of IM process was numerically studied using the enthalpy transformation 

methodology (ETM), which has been recently proved to be an efficient method to treat the 

phase-change heat conduction issues of crystalline polymers. 

The degree of crystallinity is a vital parameter that basically dictates many end-use properties of 

polymers, including dimensional stability, mechanical, optical and thermal properties [16-18]. For 

instance, the difference in density between crystalline and non-crystalline regions leads to different 

refractive indices. The heat resistance always increases with the improvement of crystallinity. Besides, 

many defects of the injection-molded articles (e.g., warpage, shrinkage, dimensional instability, etc.) 

are usually associated with crystallinity, primarily owing to the improper selection of processing 

variables. As a result, the acquisition of desired material performance could also be realized by 

regulating the crystallinity via the optimization of process parameters, such as, melt temperature, mold 

temperature, injection speed, holding pressure, etc. [19-21]. Besides, recent findings have shown that 

the mold temperature has a tremendous influence on the product life-time [22]. 

In light of the importance of crystallinity to polymeric materials, a lot of literature has been already 

presented on the simulation and experimental studies of the polymer crystallization process [23-31]. 

Among them, the Avrami Equation is a widely established relationship between crystallinity and 

crystallization time especially under quiescent isothermal crystallization conditions. On this basis, a 

number of mathematical models and modifications have also been proposed for non-isothermal 

crystallization circumstances [23, 27-29]. The theoretical analyses generally showed good agreement 

with their resultant experimental data. As is known, real processing conditions (e.g., extrusion, blow 

molding, injection molding, etc.) are considerably different from the quiescent crystallization 

investigations (either isothermal or non-isothermal) since the polymers are actually subject to the 

varying mechanical and thermal fields simultaneously. More importantly, the liberation of latent heat 

due to polymer crystallization could remarkably alter the in-cavity temperature fields [32]. 

Nevertheless, the correlation between solidification kinetics and polymer crystallization is still unclear 

up to now. 

Based on our previous work [10, 33-37], the objective of the present study is to explore the effect 

of the initial temperature difference (ITD) and the secondary temperature difference (STD) on the 

solidification kinetics of HDPE, in an attempt to disclose the physical nature behind the phase-change 

heat conduction during injection molding process. Crystallization behaviors under different processing 

conditions were compared, with the degree of crystallinity obtained using the ETM coupled with the 

material P-V-T relationship [1, 8, 34]. The present work is of fundamental importance to the 

optimization of the process variables as well as the further investigation on the relationship among 

“processing-structure-property” of crystalline polymers. 

2. Experimental

2.1. Material 

The material used in present experiments was high-density polyethylene (HDPE), Model: 5000S, 

which was kindly supplied by the Daqing Petroleum Chemical Co., China, with a number-averaged 

molecular weight (Mn) of 5.30×10
5
, and a melt flow rate (MFR) of 1.0 g/10 min (2.16 kg/190C)

according to ASTM D1238. Detailed material thermal parameters of HDPE had been presented 

elsewhere [10, 35]. 
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2.2. Rheological property characterization 

Rheological behavior was examined using the melting index (MI) tester, Model: ZRZ-1452, provided 

by the SANS Instrument Co., China. The capillary diameter is 2.09 mm, with a capillary length of 8.0 

mm. The logarithmic apparent viscosity (a) of the material used shows good linearity with the 

increase of the inverse absolute temperature (T) under a constant load (2.16 kg) at various 

temperatures ranging from 150 to 230C with an increment of 20C, as demonstrated in figure 1. The 

melt flow activation energy (Ea) of the HDPE resin was 26.6 kJ/mol, evaluated using the Arrhenius 

Equation [38]. 

Figure 1. Measured rheological curve of the HDPE resin used. 

2.3. In-cavity temperature measurement during IM process 

IM experiments were carried out on a reciprocating screw precision injection-molding machine 

(Model: HYF-350, Haiying Plastic Machinery Manufacturing Co., China). The mold cavity utilized 

had its dimensions as follows: 175.0 mm in length, 12.0 mm in width, and 4.0 mm in thickness. The 

mold temperature was regulated through the use of circulating water. The injection time and packing 

time were 1.5 sec and 3.0 sec, respectively. Two armored copper-constantan micro-thermocouples 

(Model: TK-247, Anthone Electronics Co., China), with a 0.5 mm diameter sensor tip and measuring 

range from 35 to 350C, were installed to monitor the temperature decays at specific positions. The 

insert depth of both thermocouples was adjustable so as to measure the in-cavity temperature profiles 

at different positions from the mold surface to the central plane of the cavity. The operation has been 

detailed in our previous studies [39]. The temperature changes throughout the injection molding cycles 

were recorded by a Keithley-2700 Data Acquisition System with a sampling time of 0.1 sec. In the 

present work, the injection molding experiments were conducted according to the processing 

conditions, as listed in table 1. For better comparison, four cooling conditions used in this study were 

denoted as Case A (T0=190C, Tw=20C), Case B (T0=210C, Tw=40C), Case C (T0=210C, Tw=60C) 

and Case D (T0=230C, Tw=50C), where T0 and Tw represent the melt and mold temperatures, 

respectively. 

Table 1. Processing conditions used in injection molding experiments. 

Processing parameters Values 

Melt temperature (C) 190, 210, 230 

Mold temperature (C) 20, 40, 50, 60 

Injection pressure (MPa) 50.0 

Packing pressure (MPa) 35.0 

Injection time (sec) 1.5 

Packing time (sec) 3.0 

Cooling time (sec) 120.0 
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3. Results and discussion

Figure 2 shows the temperature profiles obtained via ETM through the part thickness under the 

processing conditions of Cases A-D from ln t=0 to ln t=4, where t is the cooling time. Two horizontal 

imaginal lines of T=110°C and T=120°C were portrayed so as to indicate the region representing the 

mushy zone, which consists of both liquid and solid phases [33]. For simplicity, the thickness is 

presented in the form of normalized distance (X), which is defined as X=x/b with b denoting the 

reference length (i.e., b=2 mm in the present work) [36]. It can be seen from the comparison among 

figures 2a-2d that the temperature at X=0 (i.e., the position closest to the mold wall) falls sufficiently 

rapidly to the wall temperature (TW) from the initial melt temperature (T0), suggesting the existence of 

a large cooling rate. At a specific time, the cooling rate decreases gradually with the increasing X from 

the mold wall surface. As compared with the outer parts of the injection-molded article, the inner parts 

maintain relatively high temperature. This could be due to the fact that the latent heat released during 

the melt crystallization could not be transferred away timely in the central area. The vertical distance 

between two neighboring curves at a specific location can be adopted to be an estimate of the cooling 

rate. For instance, at X=0.5, the time when the temperature drops from T0 to the range of mushy zone 

T1~T2 [34, 39] (i.e., T1=115.1C and T2=118.2C for the present case), can be employed to compare the 

cooling rate under various cooling conditions. For brevity, ITD and STD were defined as ITD=T0-Tw 

and STD=Tf-Tw, respectively, with the reference phase transition temperature (Tf) given by Tf 

=(T1+T2)/2 [34, 36]. The values of both ITD and STD are presented in table 2. The cooling rate () 

was estimated in the following order:  Case A >  Case B >  Case D >  Case C, which is consistent with the 

consequence of STD [39]. Both Cases A and B have the same ITD of 170C but TW Case A < TW Case B, 

which also indicated that mold temperature exerted greater influence on the controlling of the cooling 

rate [11, 33]. It was shown that at a given location, when X < 0.4, the cooling speed increased firstly 

and then decreased; while X  0.4, the cooling speed increased continuously. At X = 1.0, it was not 

until ln t = 2 that the temperature began to change, suggesting that it took some time for heat to be 

transferred out. 

Figure 2. Temperature profiles across the part thickness direction (evaluated via ETM) under 

various cooling conditions: (a) T0=190 C, TW=20 C, (b) T0=210 C, TW=40 C, (c) T0=210 C, 
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TW=60 C and (d) T0=230 C, TW=50 C. 

Table 2. Comparison of ITD and STD values under various cooling conditions (unit: C). 

Temperature 

Difference 

Case A Case B Case C Case D 

ITD 170.0 170.0 150.0 180.0 

STD 96.7 76.7 56.7 66.7 

For better comparison, the dimensionless temperature () was also introduced by θ=(T-TW)/(T0-TW) 

[33, 37]. The phase transition occurred at θ = 0.56~0.58, 0.44~0.46, 0.50~0.52, 0.36~0.38, respectively, 

under various cooling conditions from Case A to Case D. Two horizontal lines (also given in 

dimensionless form) were depicted in figure 3 to distinguish the area that underwent the 

phase-transition process. It can be observed that no phase-transition platform was displayed at X = 0.1 

under Case C. The onset time when phase-change platform occurs at the locations of X = 0.1 and X = 

0.3 ranks as, Case C < Case A < Case B < Case D, which is generally in accordance with the rank of 

ITD. At X=0.3, the length of phase-transition plateau (Lpc) ranks as Lpc Case C < Lpc Case B < Lpc Case D < Lpc 

Case A, which is different from our previous finding that Lpc is merely indicated by STD [39]. It was thus 

suggested that Lpc is more relevant to the initial melt temperature (T0) instead of the STD. It is obvious 

that the closer to the center, the slower cooling rate (that is to say, the longer time the polymers stay 

within the crystallization temperature range T1~T2). The cooling rates at the occurrence of the 

phase-change transition are summarized in table 3. At X=0.7, the sequence of cooling rate is consistent 

with that of ITD, indicating that when X > 0.4 the influence of various factors (such as, shear force, 

mold temperature, etc.) tends to be stable. But at X = 0.3, Cases D and A are on the contrary, since 

Case A has relatively low mold temperature as compared to Case D, which also suggests that the mold 

temperature displays greater influence on the cooling rate [33]. 

Figure 3. Temperature traces with elapsed time under various cooling conditions: (a) T0=190C, 

TW=20C, (b) T0=210C, TW=40C, (c) T0=210C, TW=60C and (d) T0=230C, TW=50C. 
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Table 3. Comparison of cooling rates at the occurrence of phase transition under various cooling 

conditions (unit: C/s). 

Location Cooling rate at the occurrence of phase transition 

Case A Case B Case C Case D 

X=0.3 1.35 1.04 2.84 0.65 

X=0.7 0.91 0.70 1.29 0.51 

As can be seen in figure 4, the length of the phase transition (Lpc) close to the mold surface is 

much shorter than that far away from it. At all positions in the cavity, Lpc ranks as Lpc Case A < Lpc Case B < 

Lpc Case D < Lpc Case C, indicating that the cooling speed ranks as, Case A > Case B > Case D > Case C. 

That is to say, the larger the Lpc value, the slower the cooling rate, which is consistent with the result 

from STD. In Case A, at X = 0.4~0.6, the Lpc value approximately remains constant. Generally 

speaking, the length of phase transition platform tends to share similar value when X  0.4, for 

instance, Case B: X = 0.4~0.7, Case C: X = 0.5~0.7, and Case D: X = 0.6~0.7. 

Figure 4. Position dependence of the phase-change plateau length (Lpc). 

Figure 5. Distribution of crystallinity () across the part thickness direction: (a) T0=190 C, 
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TW=20 C, (b) T0=210 C, TW=40 C, (c) T0=210 C, TW=60 C and (d) T0=230 C, TW=50 C. 

Figure 5 shows the variation of crystallinity () of injection-molded articles as a function of 

position. It should be mentioned that the degree of crystallinity () can be calculated by using the 

following equation: 

   
c

-
= 1 0 0 % 1 0 0 %

-

c a a

a a c

V V

V V

  


  


   


     (1) 

where c and Vc are the density and specific volume of the crystalline phase, respectively; while a 

and Va are the density and specific volume of the amorphous phase of polymers, respectively. 

According to literature [40], c = 1.014 g/cm
3
, a = 0.854 g/cm

3
, for HDPE. With the aid of the 2d-Tait

equation (see the Appendix), the specific volume can be estimated when the temperature and pressure 

are known. Then, the crystallinity () can be readily calculated using equation (1). 

The crystallinity of the polymer decreased from the mold surface to the core, as shown in figure 5. 

As the cooling time elapsed, the crystallinity of the polymer increased. The change of crystallinity at 

the central region was more obvious than that at the cortical region where the crystallinity hardly 

varied. Since there exist multi-scale structures as well as amorphous fractions within the 

macromolecules (unlike the ideal small molecular substances), polymer crystallization is quite difficult 

to achieve one hundred percent at all positions across the part thickness direction. In figure 6, the red 

curve is a master curve obtained via non-linear curve fitting technique, with the fitting curve being 

expressed as t1/2
-1

 = 0.0061X 
-2.188

. It can be readily seen that the experimental data under various 

cooling conditions have a relatively good fit to it. Since the value of t1/2
-1

reflects the average 

crystallization rate [41, 42], the larger the value of t1/2
-1

, the greater the average crystallization rate of 

polymers. It can be seen that the crystallization rate considerably slows down with the decrease of 

cooling rate. 

Figure 6. Position dependence of crystallization rate (as evaluated by t1/2
-1

). 

Figure 7a suggests that the values of crystallinity at log t=0 (namely,  log t = 0) are quite similar 

under various cooling conditions for a given position (esp. in the inner locations). At X = 0.1, when log 

t = 0, the crystallinity ranks as  Case A >  Case B >  Case C >  Case D, which could be primarily dictated 

by the melt temperature (T0). Under different conditions, the evolution of crystallinity with time 

generally takes an "S" shape, which is also in accordance with the non-isothermal crystallization 

kinetic studies [23, 42, 43]. However, a remarkable distortion on the kinetic curves is observed 

roughly at Xt = 80%, and the phenomenon could possibly be associated with the existence of shear 

flows during the melt post-filling stage. The start-stop time of phase transition can be readily acquired 

from the first derivation of the  vs. log t curves. From the comparison, it can be concluded that the 

start time at X=0.1 is earlier than that at X=0.3 and X=0.7. At the position quite close to the mold 

surface, there exists large thermal gradient, which acts as the driving force of heat transfer [38], 

leading to the occurrence of phase transformation at the polymer/mold interface. Moreover, due to the 

thermal protection effect of the outer polymer (allowing for the poor thermal conductivity of 
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polymers), the inner parts of the injection-molded article show relatively slower response to heat, thus 

these kinetic curves change slightly at the beginning of crystallization. 

Figure 7. Evolution of relative crystallinity () as a function of cooling time under various processing 

conditions: (a) T0=190C, TW=20C, (b) T0=210C, TW=40C, (c) T0=210C, TW=60C and (d) T0=230 

C, TW=50C. 

Figure 8. Variation of relative crystallinity () versus cooling time at various locations (a) X=0.1, (b) 

X=0.3, (c) X=0.7, and (d) comparison of crystallinity evolution with time between experimental and 
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calculated data at X=0.5 and X=1.0 (under Case D). 

Figure 8 shows that under the four different cooling conditions, the crystallinity () ranks as,  Case 

A > Case B >  Case C >  Case D at the beginning; while  Case A >  Case B >  Case D >  Case C at the later 

stage of the IM cooling process. The exchange of sequence in crystallinity under Cases C and D can 

be explained by the crystallinity being primarily influenced by T0 at the beginning (high T0 is 

unfavorable to the crystal nucleus formation). Subsequently, the crystallinity shows the same trends 

with STD. The variation of crystallinity versus location ranks as,  X=0.1 >  X=0.3 >  X=0.7, which 

indicates that the position close to the mold wall achieves higher crystallinity. Consistent with figure 7, 

the curve becomes complicated when the crystallinity is close to 80%, which might be caused by the 

effect of shear stress. When log t = 0, an obvious degree of crystallinity () can be obtained only at 

X=0.1; while its value is close to zero at the locations of X=0.3 and X=0.7. Through the comparison 

among figures 8a-c, it is seen that there exists an induction time before the jump of crystallinity, the 

length of which depends heavily on the melt temperature, since the melt temperature is too high to 

form the crystal nucleus. Figure 8d shows the theoretical and experimental kinetic curves at X=0.5 and 

X=1.0 under Case D, where the trends of both experimental curves are generally in reasonable 

agreement with those obtained from theoretical prediction using the Avrami Equation. Anyway, 

investigation on quantitative relationship between crystallization kinetics and cooling rate is an 

ongoing subject in our group. 

4. Conclusion

The work further explores the correlation between crystallization kinetics and thermal gradient field 

on the basis of our previous studies. It is found that the thickness X = 0.4 is a crucial position heavily 

influenced by the thermal conduction. When X > 0.4, the temperature decay tends to be stable, and the 

phase-change plateau lengths share quite similar values within a specific range (cf. figures 2 and 4). In 

addition, the crystallization rate, which is in proportion to the cooling rate, hardly changes after X = 

0.4 (cf. figure 6). The crystallization rate is higher at the location close to the mold wall than that in the 

core region during the IM cooling process, primarily due to the temperature difference between the 

melt temperature and the mold temperature. At a later stage of melt cooling, the consequence in 

relative crystallinity is in agreement with that in STD (cf. figure 8). The present study is of practical 

significance to the optimization of cooling parameters and the further investigation on the correlation 

among “processing-structure-property” of polymers and their composites. 
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Appendix 

The P-V-T relation of polyethylene is presented as below: 

0 0( , ) ( ) [1 ln(1 )] ( , )
( )

t

P
V T P V T C V T P

B T
      ; 

0 1 2 5 3 4 5( ) ( ); ( ) exp[ ( )]; ( , ) 0, ( )m m m m t tV T b b T b B T b b T b V T P T T P          

0 1 2 5 3 4 5

7 8 5 9

( ) ( ); ( ) exp[ ( )];

( , ) exp[ ( ) ], ( )

s s s s

t t

V T b b T b B T b b T b

V T P b b T b b P T T P

        

      

where 5 6( )tT P b b P    and 0C   0.0894 

The values of the material parameters are listed as follows: b1m=0.001274 m
3
·kg

-1
; b1s=0.001075

m
3
·kg

-1
; b2m=1.026×10

-6 
m

3
·kg

-1
·K

-1
; b2s=2.077×10

-7 
m

3
·kg

-1
·K

-1
; b3m=9.263×10

7 
Pa; b3s=3.324×10

8 
Pa;

b4m=0.004941 K
-1

; b4s=2.46×10
-6 

K
-1

; b5=414.5 K; b6=1.543×10
-7 

K·Pa
-1

; b7=0.0001872 m
3
·kg

-1
;
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b8=0.05158 K
-1

; b9=1.023×10
-8 

Pa.
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