This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy. Close this notification
Brought to you by:
Paper The following article is Open access

Tensile failure of thin aluminium sheet observed by in-situ EBSD

, and

Published under licence by IOP Publishing Ltd
, , Citation S Kahl et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 82 012095 DOI 10.1088/1757-899X/82/1/012095

1757-899X/82/1/012095

Abstract

Tensile tests on two similar 75-μm-thick aluminium sheet materials were carried out inside a scanning electron microscope equipped with an electron backscatter detector. The materials were subjected to simulated brazing prior to the test because this type of material is used for fins in automotive heat exchangers. Grain sizes were large relative to sheet thickness and ND-rotated cube and P texture components dominated the recrystallization textures; their volume fractions differed strongly in the two different materials, though. Strains over the microscope image fields were determined from positions of constituent particles or from grain sizes; the two methods gave consistent results. Grains with high Schmid factors accumulated significantly more deformation than grains with low Schmid factors. Cracks nucleated in high-Schmid factor grains, or in groups of such grains, at the specimen edges. When only low-Schmid factor grains were present at the specimen edges, the crack nucleated inside the specimen. The subsequent crack growth was intragranular and occurred at approximately 90° relative to the load direction.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.