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Abstract. Determination of crystal orientations from diffraction patterns is directly linked
to pattern indexing. The problem of indexing can be seen as matching scattering vectors to
vectors of the crystal reciprocal lattice. With known crystal structure, the simplest version of
indexing is formulated as the (constellation) problem of matching vectors under rotations: given
two sets X and Y of unit vectors, determine a rotation carrying the largest subset of X to a
position approximating a subset of Y . It is shown that algorithms for solving the constellation
problem establish a framework for several orientation determination methods. A class of these
algorithms is based on accumulating contributions in the rotation space. A rotation with the
largest accumulation is considered to solve the problem. The contributions can be made by
n-tuples of vectors with n starting from 1. Formulas for the points of accumulation are given
for arbitrary n ≥ 1. Particularly simple turns out to be the case of 2-tuples. It has a potential
of being robust, and it is easy to implement.

1. Introduction
Over the last two decades, automatic orientation imaging has become one of the most significant
methods of investigating polycrystalline materials. That occurred thanks to the progress in
orientation mappings carried out using mainly electron backscatter diffraction (EBSD) [1] and
similar systems relying on transmission electron microscopy [2] or high-energy X-ray diffraction
[3]. The orientation imaging is directly linked to indexing of diffraction patterns; orientation
determination and indexing of patterns originating from known crystal structures are practically
equivalent. As numerous patterns are being analyzed, the indexing algorithms need to be time
efficient. Equally important is their robustness; indexing is expected to function properly despite
errors in geometric parameters of the patterns and/or spurious reflections. Robustness is crucial
in diffraction-based non-destructive grain shape reconstruction [3] when multiple crystallites
contribute to recorded patterns. Indexing and orientation determination algorithms are as good
as their ability to cope with imperfections of input data. For devising optimal algorithms, it is
essential to express the problem in a formal way based on simple principles.

In pattern indexing and crystal orientation determination, the point is to match measured
scattering vectors (differences between reflected and incident wave vectors) to low-index vectors
of the crystal reciprocal lattice. From a computational perspective, indexing can be formulated
as the so-called largest common point set (LCPS) problem; cf. [4]. In the simplest case, e.g.,
when EBSD bands are indexed, the magnitudes of the scattering vectors are unknown, and all
involved vectors are assumed to be of unit magnitude. The corresponding restricted case of LCPS
is referred to as the constellation problem [5]: given two sets X and Y of unit vectors, determine
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a rotation carrying the largest subset of X to a position approximating a subset of Y. Solving
this problem involves both combinatorial matching (assignment) and continuous alignment. In a
strict formulation of the constellation problem, a given maximum distance between the matched
vectors is allowed. In indexing, such a distance is difficult to specify, or it may vary widely
because experimental errors depend on the scattering vector and the direction in space. The
heuristic procedures considered below are suitable for solving cases with unspecified distance
thresholds, but they do not provide any theoretical guarantee of the quality of the output. In
that respect, they are similar to the softassign matching algorithm proposed in [6].

This paper describes a common framework for a number of indexing algorithms. Approaches
which at first sight may look different, turn out to be based on similar foundations. We
demonstrate that a number of these algorithms can be seen as an accumulation of contributions,
i.e., a form of the generalized Hough transform with the abstract rotation space (or the symmetry
induced fundamental region [7]) as the parameter space. The contributions can be made by
individual vectors (one vector from each set), and in this case accumulation takes place along
continuous curves in the rotation space; with two or more vectors from each set, accumulation
takes place at discrete points in the rotation space. At the end, the rotation with the largest
total accumulation is considered to solve the problem. We list straightforward formulas for the
points of accumulation, and we check optimality of these points. The advantage of the considered
methods lies in their robustness and conceptual simplicity. The algorithms are relatively easy
to implement. We show that particularly simple is the case when pairs of vectors are matched.

Further on, X and Y contain unit vectors bound to a fixed center of rotation. The vectors are
represented by column matrices with Cartesian components. Given a non-zero square matrix
A, the symbol O(A) denotes the special orthogonal matrix closest to A in the sense that it
minimizes the distance ∥A − O(A)∥2; see [7]. For a non–zero vector x, the symbol O(x, ω)
denotes the special orthogonal matrix representing the rotation by the angle ω about the axis
determined by x.

2. Accumulation in the rotation space
One of the strategies for indexing of bands in EBSD patterns is known as ’triplet indexing’ [1].
Inter-band angles are compared to angles following from known crystal structure. Based on each
band triplet, potential crystal orientations are determined, and each of these orientations gets a
vote. The orientation with the largest number of votes is considered to solve the problem. For a
more formal description, instead of the angles, we use vectors. If a triplet of linearly independent
vectors xi of X (i = 1, 2, 3) is rotated to form the triplet yi (= Rxi) of Y , the special orthogonal
matrix R representing the rotation can be expressed as

R = [ y1 y2 y3 ] [x1 x2 x3 ]
−1 . (1)

In indexing, the (normalized scattering) vectors xi ofX are affected by errors, the match between
(normalized reciprocal lattice) vectors yi and the rotated xi is only approximate, and the matrix
[ y1 y2 y3 ] [x1 x2 x3 ]

−1 needs to be adjusted to satisfy orthogonality conditions; e.g., one can use
R′(3) = O

(
[ y1 y2 y3 ] [x1 x2 x3 ]

−1
)
. Now, similarly to [1], to determine the rotation carrying

the largest subset of X to a subset of Y , all triplets from X and from Y are considered, and each
pair of triplets contributes to a point in the rotation space. Assuming exact congruence between
the largest matching subsets of X and Y , the rotation relating them gets the largest number of
contributions, and the problem is reduced to locating a maximum of the contributions.

This ’triplet indexing’ can be generalized to higher order procedures by employing n-tuples
of vectors. To make such a generalization, one needs a formula calculating the rotation best
matching large vector sets (and a clear understanding of what the ”best matching” really means).
Let n ≥ 3, and let the rank of the involved matrices be equal to 3. In analogy to eq.(1) and
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definition of R′(3), the rotation matrix can be obtained from

R′(n) = O
(
[ y1 y2 . . . yn ] [x1 x2 . . . xn ]

+) , (2)

where the superscript + denotes the generalized (Moore–Penrose) inverse. This solution
is optimal in the sense that R′(n) is the special orthogonal matrix closest to the matrix
A = [ y1 y2 . . . yn ] [x1 x2 . . . xn ]

+ which in turn minimizes
∑n

i=1(yi − Axi)
2; cf. [8]. Less

involved and more suitable is the solution given by

R(n) = O
(
[ y1 y2 . . . yn ] [x1 x2 . . . xn ]

T
)

; (3)

it is optimal in the sense of spherical regression, i.e., one can show that the above R(n) is the
special orthogonal matrix minimizing the sum

∑n
i=1(yi −R(n)xi)

2.
In matching based on large n, additional vectors sharpen the criteria for the congruence of

given subsets. On the other hand, using higher order n-tuples increases the computational costs.
To avoid combinatorial explosion, n needs to be kept small. Moreover, numerical experiments
show that with error affected data, higher order n-tuples do not really improve the quality of
indexing; cf. [9]. This draws attention to indexing based on n < 3, i.e., on individual vectors
(n = 1) or pairs of vectors (n = 2).

The procedure for accumulating contributions based on individual vectors (n = 1) was
described in [4]. Given two vectors x1 and y1 in X and Y , respectively, we look for all
rotations transforming x1 on y1. Assuming that x1 ̸= −y1, these rotations are represented by the
matrices R(1)(ω) = O(y1, ω) O(x1 + y1, π), and they constitute an ω-parameterized geodesic in
the rotation space. Each pair from X ×Y contributes to rotations located on one of these lines.
As above, the rotation relating the largest matching subsets of X and Y gets the largest number
of contributions, and again, the problem is reduced to locating a maximum of the contributions.
A variant of this approach was implemented by Schmidt [10].

The unexplored case of n = 2 turns out to be particularly interesting. It is in a sense elemental
among those providing discrete solutions. Eqs.(2–3) cannot be directly extended to get rotations
matching 2–tuples. (When the rank of [x1 x2 . . . xn ] is smaller than 3, the Moore–Penrose
inverse gives A satisfying yi = Axi and minimizing ∥A∥2 [8], but O (A) is generally distant from
the best rotation matrix carrying xi on yi. Also eq.(3) is inconvenient because of complications
with calculating the special orthogonal matrix closest to a singular matrix.) The simplest way
of circumventing this problem is to use eqs.(2–3) for n = 3 with the third linearly independent
vector, say x, formed from x1, x2, and a corresponding vector y analogously constructed from
y1, y2. The simplest choice is to use the cross products x = x1 × x2 and y = y1 × y2; with these
vectors, the matrices [x1 x2 x ]T and [x1 x2 x ]−1 are generally different, but eqs. (2) and (3)
lead to the same result

R(2) = O
(
[ y1 y2 y ] [x1 x2 x ]T

)
= O

(
[ y1 y2 y ] [x1 x2 x ]−1

)
= [ ry1 ry2 ry3 ] [ r

x
1 rx2 rx3 ]

T , (4)

where rx1 , r
x
2 and rx3 represent normalized versions of x, x1 + x2 and x1 − x2, respectively, and

the ryi vectors are defined in analogous way. The essential point is that R(2) given by eq.(4)
also transforms the pair x1, x2 to the position closest to that of y1, y2 in the sense of spherical
regression. Moreover, with the last part of eq.(4), the computation of this optimal rotation
matrix involves only elementary steps.

As in all accumulation-based methods, at the end, one needs to determine the locations of
maxima in the accumulator space. Since the match between vectors is only approximate, some
tolerance must be allowed. A straightforward way to evaluate the contributions is by partitioning
the rotation space into equivolume bins of size linked to the accuracy of experimental data and
the resolution of resulting orientations. The center of the bin with the largest accumulation
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is the sought rotation matching the largest subsets of X and Y . With this approach, extra
measures are needed to take account of contributions distributed in neighboring bins.

Instead of binning, cluster analysis can be implemented. One of the methods is to use a
list of potential solutions: Every new rotation obtained from eqs.(2–4) is compared to already
saved potential solutions. If the rotation deviates from a given solution by a misorientation
angle smaller than a threshold, a ranking number of that solution is increased, and the solution
is corrected by taking a weighted average [11] of the solution and the new rotation. Otherwise,
the rotation is appended to the list as a new potential solution. Clearly, this approach is more
suitable for resolving the discrete cases (n ≥ 2) than the continuous one (n = 1).

With n ≥ 2, some of the matchings can be omitted by assuming that the vectors xi can
match yi only if the angles between vectors of the n-tuples differ by less than a threshold; if
not, the n-tuples are rejected as a possible match. (This is particularly simple when n = 2:
the vectors x1 and x2 can match y1 and y2 only if the angle between x1 and x2 is close to that
between y1 and y2.) This approach links the indexing methods described above to methods in
which measured angles between scattering vectors are compared to angles between reciprocal
lattice vectors with potential solutions scored according to the number of good matches. Thus,
in essence, these methods also use a form of accumulation, but the accumulator space and the
way of contributing are not explicitly identified.

3. Final remarks
An inspection of the field (including ab initio indexing) shows that robust solutions to the
indexing problem are based on various forms of accumulation. They differ by the nature
of contributions, the parameter space, and the methods of collecting and counting the
contributions. Depending on demands, one may use various combinations of these forms;
in particular, to improve reliability of indexing, one may apply multiple contributions of
different types and various methods of counting the contributions. Moreover, as the orientation
determination via accumulation can be seen as the generalized Hough transform, its reliability
can also be improved by adapting known enhancements of that transform [12].

For brevity, we considered only the constellation problem (LCPS problem limited to
rotations), with all vectors having the same magnitude, but it is worth noting that the described
procedures can be relatively easily generalized to matching vectors with arbitrary magnitudes.
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