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Abstract. This paper presents derivation of the probability distribution for the area enclosed by 
a polymer loop in a gel and under different external fields using white noise analysis. In this 
context, the polymer loop is represented by Brownian paths and its immersion in a gel 
constraints it to occupy a constant area[1]. The external fields considered are electric field, and 
crossed electric-magnetic fields. 

1. Introduction 
The Hida-Streit’s infinite dimensional analysis, otherwise known as white noise analysis has been used 
successfully as a framework for stochastic and infinite-dimensional systems. This has been applied to 
several disciplines, most notably in quantum physics [2,3] and statistical mechanics[4,5]. Its 
applicationin solving polymer conformation problems was first introduced by C. Bernido and M. V. 
Bernido where they studied statistical mechanical properties of polymers with length dependent 
potentials[4,5], polymer chirality [5]and winding probability of entangled polymers[6].  

As an extension to the works of C. Bernido and M. V. Bernido, we present in this paper the use 
white noise analysis in getting the probability distribution for the area enclosed by a polymer loop in a 
gel under different external fields. In this context, the polymer conformation is viewed as Brownian 
paths and the steric and topological effects of others polymers in a gel constraints the loop to enclose a 
fixed area[1,7]. An example of a polymer in a gel under an external field is DNA electrophoresis 
where the DNA is subjected by an external electric field. In this paper, we generalize the probability 
distribution to include other possible external fields.  

This paper is organized as follows: we give a brief review of the path integral of the probability 
distribution for the area enclosed by a polymer loop in a gel as presented in [7]. Then we generalize 
the formulation to include external fields where we consider time-independent electric fieldand 
crossed electric-magnetic fields. We then translate the probability distribution in the language of white 
noise analysis and evaluate the distribution using the T-  and S-transforms [5]. We note that the same 
polymer system with and without electric field was also studied by Khandekar and Wiegel [7,8] using 
straight forward evaluation of the path integral describing the system.  
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2. Path integral for the distribution of the area enclosed by a polymer loop under external fields  
An unconstrained polymer may be viewed as a polymer in a dilute solution where the interaction 
between the solvent and the polymer is negligible. The Wiener integral representation of the 
probability density of this polymer with ends fixed at 𝒓𝟎 and 𝒓𝟏 is given by [7] 
 𝑷(𝒓𝟏, 𝑵|𝒓𝟎, 𝟎) = ∫ 𝐞𝐱𝐩 − 𝟏𝒍𝟐 ∫ 𝒅𝒓𝒅𝒗 𝒅𝒗𝑵𝟎 𝒅[𝒓(𝒗)]𝒓𝟏𝒓𝟎 , (1) 

where for non-interacting polymer,𝑙 is the distance between two monomers, and 𝑣 is the number of 
monomers with increasing value from 1 to 𝑁.  

For a polymer in a gel or a polymer solution, the steric and topological effects of others polymers 
constraints the polymer to enclose a constant area 𝐴 [1,7] making the probability distribution for the 
area enclosed as                     𝑷(𝑨, 𝑵) = 𝑪 ∫ 𝛅 𝑨 − ∫ 𝟏𝟐 𝒙 𝒅𝒚𝒅𝒗 − 𝒚 𝒅𝒙𝒅𝒗 𝒅𝒗𝑵𝟎 𝐞𝐱𝐩 − 𝟏𝒍𝟐 ∫ 𝒅𝒓𝒅𝒗 𝟐 𝒅𝒗𝑵𝟎 𝒅[𝒓(𝒗)],𝒓𝟏𝒓𝟎  (2) 

where 𝐶 is the normalization constant and  𝑨 = ∫ 𝟏𝟐 𝒙 𝒅𝒚𝒅𝒗 − 𝒚 𝒅𝒙𝒅𝒗 𝒅𝒗𝑵𝟎  (3) 

is the algebraic area which is enclosed by the polymer loop configuration 𝒓(𝑣). The sign convention is 
that 𝐴 is counted positive if the enclosed area is located to the left of the curve when traced by 
increasing number of monomers, 𝑣, otherwise it is negative [7].  

When this polymeric system is under an external field with potential 𝑉, we can write the 
probability distribution in general form as          𝑷(𝑨, 𝑵) = 𝑪 ∫ 𝛅 𝑨 − ∫ 𝟏𝟐 𝒙 𝒅𝒚𝒅𝒗 − 𝒚 𝒅𝒙𝒅𝒗 𝒅𝒗𝑵𝟎𝒓𝟏𝒓𝟎 𝐞𝐱𝐩 − 𝟏𝒍𝟐 ∫ 𝒅𝒓𝒅𝒗 𝟐 𝒅𝒗 𝑵𝟎  − ∫ 𝑽𝒅𝒗𝑵𝟎  𝒅[𝒓(𝒗)]. (4) 

The effect of the potential is added on the ‘kinetic’ part of the path integral.  
Rewriting the Dirac delta as Fourier integral, we have the probability density in equation (4) as 
 𝑷(𝑨, 𝑵) = 𝑪𝟐𝝅 ∫ 𝑷(𝒈, 𝑵)𝐞𝐱𝐩(𝒊𝒈𝑨) 𝒅𝒈 (5) 

where   𝑷(𝒈, 𝑵) = ∫ 𝐞𝐱𝐩 − ∫ 𝑳𝒅𝒗𝑵𝟎 𝒅[𝒓(𝒗)]𝒓𝟏𝒓𝟎  (6) 

and 𝑳 = 𝟏𝒍𝟐 𝒅𝒙𝒅𝒗 𝟐 + 𝒅𝒚𝒅𝒗 𝟐 + 𝟏𝟐 𝒊𝒈 𝒙 𝒅𝒚𝒅𝒗 − 𝒚 𝒅𝒙𝒅𝒗 + 𝑽. (7) 

We then evaluate the probability distribution, equation (5), using white noise analysis. In this 
method, the paths are parametrized in terms of Brownian motion. Essential steps of the evaluation are 
presented in the next section.  

3. Probability distribution in the framework of White Noise Analysis 
In writing the probability distribution in equation (5) to the language of white noise analysis, we first 
parametrize the paths as  𝒙(𝑳) = 𝒙𝟎 + 𝒍𝑩𝒙(𝒍) and  (8) 𝒚(𝑳) = 𝒚𝟎 + 𝒍𝑩𝒚(𝒍), (9) 
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where 𝐵 = ∫ 𝜔 𝑑𝑣 and 𝐵 = ∫ 𝜔 𝑑𝑣 are Brownian motions in the 𝑥 and 𝑦 coordinates 
respectively parametrized by 𝑣that runs from 0 to  𝑁, 𝜔(𝑣) is the white noise variable, 𝑙 is the distance 
between monomers and 𝐿 is the length of the polymer loop. 

In white noise analysis, the integral over the paths 𝑑[𝒓(𝑣)] becomes an integral over the Gaussian 
white noise 𝑑𝜇(𝜔) with relation given by [5]                                          𝒅[𝒓(𝒗)] → 𝑵𝒙𝒚𝐞𝐱𝐩 𝟏𝟐 ∫ 𝝎𝒙𝟐 + 𝝎𝒚𝟐 𝒅𝒗 𝑵𝟎 𝒅𝝁(𝝎𝒙)𝒅𝝁(𝝎𝒚), (10) 

where 𝑁 is an appropriate normalization constant. We further note that in the process of path 
parametrization done in equations (8) and (9), only the initial point is fixed. Hence we use the Donsker 
delta functions  𝛅(𝒙(𝑳) − 𝒙𝟏) = 𝛅(𝒙𝟎 + 𝒍𝑩𝒙(𝒍) − 𝒙𝟏)and  (11) 𝛅(𝒚(𝑳) − 𝒚) = 𝛅 𝒚𝟎 + 𝒍𝑩𝒚(𝒍) − 𝒚  (12) 

to fix the endpoints. For a polymer loop, the final and initial points are the same simplifying equations 
(11) and (12) asδ(𝐵 (𝑙)) and δ(𝐵 (𝑙)) respectively. These Donsker delta functions are then written 
into their Fourier integral representations. 

These are the initial preliminary steps in writing a Wiener integral representation of the polymer 
loop in the language of white noise analysis. The bulk of the evaluation of the probability distribution 
is done via the T-transform, the mathematical tool used to evaluate the integration over the Gaussian 
white noise measure 𝑑𝜇(𝜔). 

In the following subsections, we consider different systems in applying white noise analysis. 

3.1. Polymer in a gel in the absence of an external field 
When there is no external field, the distribution for the area enclosed by the polymer loop is given by  𝑷𝟎(𝑨, 𝑵) = 𝑪𝟐𝝅 ∫ 𝑷𝟎(𝒈, 𝑵)𝐞𝐱𝐩(𝒊𝒈𝑨) 𝒅𝒈  (13) 

where   𝑷𝟎(𝒈, 𝑵) = ∫ 𝐞𝐱𝐩 − ∫ 𝑳𝒅𝒗𝑵𝟎 𝒅[𝒓(𝒗)]𝒓𝟏𝒓𝟎  (14) 

and 𝑳 = 𝟏𝒍𝟐 𝒅𝒙𝒅𝒗 𝟐 + 𝒅𝒚𝒅𝒗 𝟐 + 𝟏𝟐 𝒊𝒈 𝒙 𝒅𝒚𝒅𝒗 − 𝒚 𝒅𝒙𝒅𝒗  . (15) 

Writing this distribution in the language of white noise analysis yields 𝑷(𝑨, 𝑵) = 𝑪𝟏𝟖𝝅𝟑 ,𝒑𝒙,𝒑𝒚
𝐫𝟏

𝐫𝟎 𝐞𝐱𝐩 − 𝟏𝟐 𝝎𝒙𝟐 + 𝝎𝒚𝟐 𝒅𝒗𝑵
𝟎 − 𝒊𝒈𝒍𝟐𝟐 𝑩𝒙𝒅𝑩𝒚 − 𝑩𝒚𝒅𝑩𝒙 𝒅𝒗𝑵

𝟎,𝒈  

        𝐱 𝐞𝐱𝐩 ∫ 𝒊𝒈𝒍𝟐 𝒙𝟎𝝎𝒚 − 𝒚𝟎𝝎𝒙 + 𝒊𝒑𝒙𝒍𝝎𝒙 + 𝒊𝒑𝒚𝒍𝝎𝒚𝑵𝟎 𝒅𝒗 𝐞𝐱𝐩(𝒊𝒈𝑨) 𝒅𝝁(𝝎)𝒅𝒑𝒙𝒅𝒑𝒙,𝒅𝒈, (16) 

where 𝐶  is the collective normalization constant, the variables𝑝  and 𝑝  came from the Fourier 
integral representations of the Donsker delta functions in equations (11) and (12), and∫ 𝐵 𝑑𝐵 −𝐵 𝑑𝐵 ) 𝑑𝑣 corresponds to the Levy’s stochastic areawhich is equal to A[9]. 

Notice that the probability distribution in equation (16) is in two dimensional Brownian motion. 
This can be realized in the probability space of one-dimensional white noise as presented in 
[9]resulting to  
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𝑷𝟎(𝑨, 𝑵) = 𝑪𝟏𝟖𝝅𝟑 ,𝒑𝒙,𝒑𝒚
𝐫𝟏

𝐫𝟎 𝐞𝐱𝐩 − 𝟏𝟐 < 𝜔, 𝜔 >  −𝑖𝑔𝒍𝟐 < 𝝎, 𝑭𝒔𝝎 >,𝒈  

𝐱 𝐞𝐱𝐩 (𝒊 < 𝜔, 𝒑𝒚𝒍 + 𝟏𝟐 𝒈𝒍𝒙𝟎 𝑿[ 𝑵,𝟎] + 𝒑𝒙𝒍 + 𝟏𝟐 𝒈𝒍𝒚𝟎 𝑿[𝟎,𝑵]. >) 𝒅𝝁(𝝎)𝒅𝒑𝒙𝒅𝒑𝒙𝐞𝐱𝐩(𝒊𝒈𝑨)𝒅𝒈.(17) 

The term< 𝜔, 𝐹 𝜔 >which can be expanded as∫ 𝜔(𝑣)𝐹 (𝑣, 𝑣 )𝜔(𝑣) 𝑑𝑣𝑑𝑣′ corresponds to the 
Levy’s stochastic area [9].   

We note that equation (17) can be written as  
 𝑷(𝑨, 𝑵) = 𝑪𝟏𝟖𝝅𝟑 ∫ ∫ ∫ ,𝒑𝒙 𝑻(𝚽)𝒅𝒑𝒙𝒅𝒑𝒙𝐞𝐱𝐩(𝒊𝒈𝑨)𝒅𝒈 ,𝒑𝒚,𝒈 , (18) 

where𝑇(Φ)is the T-transform of the functional Φ(𝜔): 
 𝑻(𝚽) = ∫ 𝐞𝐱𝐩 (𝒊 < 𝜔, 𝜉 >)𝚽(𝝎) 𝒅𝝁(𝝎) (19) 

with 𝚽(𝝎) = 𝐞𝐱𝐩 − 𝟏𝟐 < 𝜔, 𝜔 >  −𝑖𝑔𝒍𝟐 < 𝝎, 𝑭𝒔𝝎 >  (20) 

and 𝝃 = 𝒑𝒚𝒍 + 𝟏𝟐 𝒈𝒍𝒙𝟎 𝑿[ 𝑵,𝟎] + 𝒑𝒙𝒍 + 𝟏𝟐 𝒈𝒍𝒚𝟎 𝑿[𝟎,𝑵]. (21) 

Calculations of the T-transform of Φ and evaluation of the integrals in equation (18) yields                            𝑷𝟎(𝑨, 𝑵) = 𝟐𝑵𝒍𝟐𝐜𝐨𝐬𝐡𝟐 𝟐𝝅𝑨𝑵𝒍𝟐 𝟏
. (22) 

This agrees with the result obtained by Wiegel and Khandekar [7] where they used straightforward 
integration over 𝒅[𝒓(𝒗)]. 
3.2. Polymer in a gel subjected to a uniform electric field 
In this system, we consider the uniform electric field to be along 𝑥 and 𝑦 axes. The contribution of the 
electric field on the probability distribution of the area enclosed by the polymer loop is added on the 
‘kinetic’ part making the expression for the probability distribution as 𝑷𝑬(𝑨, 𝑵) = 𝑪 ∫ 𝛅 𝑨 − ∫ 𝟏𝟐 𝒙 𝒅𝒚𝒅𝒗 − 𝒚 𝒅𝒙𝒅𝒗 𝒅𝒗𝑵𝟎 𝐞𝐱𝐩 − 𝟏𝒍𝟐 ∫ 𝒅𝒓𝒅𝒗 𝟐 𝒅𝒗 𝑵𝟎 + 𝒒 ∫ 𝐄 ∙ 𝐫𝒅𝒗𝑵𝟎 𝒅[𝒓(𝒗)]𝒓𝟏𝒓𝟎 , (21) 

where 𝐄 = E �̂� +  E 𝚥,̂ 𝐫 = 𝑥�̂� +  𝑦𝚥̂ and 𝑞is with𝑞′ as the charge of each monomer and T as the 
absolute temperature.   

Writing the Dirac delta function in its Fourier integral form, the probability distribution becomes 𝑷𝑬(𝑨, 𝑵) = 𝑪𝟐𝝅 ∫ 𝑷𝑬(𝒈, 𝑵) 𝐞𝐱𝐩(𝒊𝒈𝑨) 𝒅𝒈, (22) 

where   𝑷𝑬(𝒈, 𝑵) = 𝚪𝑬 ∫ 𝐞𝐱𝐩 − ∫ 𝟏𝒍𝟐 𝒅𝒙𝒅𝒗 𝟐 + 𝒅𝒚𝒅𝒗 𝟐 𝒅𝒗 𝑵𝟎 + ∫ 𝟏𝟐 𝝀 𝒙′ 𝒅𝒚𝒅𝒗 − 𝒚′ 𝒅𝒙𝒅𝒗 𝒅𝒗 𝑵𝟎 𝒅[𝒓(𝒗)]𝒓𝟏𝒓𝟎  (23) 

and 𝚪𝑬 = 𝐞𝐱𝐩 − 𝟐𝒍𝟐 𝛂(𝒙𝑵 − 𝒙𝟎) − 𝟐𝒍𝟐 𝜷(𝒚𝑵 − 𝒚𝟎) − 𝑵𝒍𝟐 (𝛂𝟐 + 𝜷𝟐) − 𝒒𝑵𝟐𝟐 (𝑬𝟏𝜶 + 𝑬𝟐𝜷) . (24) 
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Using the preliminary steps, presented in equations (8-12), we have the probability distribution in 
white noise analysis as 𝑷𝑬(𝑨, 𝑵) = 𝑪𝟏𝟖𝝅𝟑

𝐫𝟏
𝐫𝟎 𝐞𝐱𝐩 𝒊𝒑𝒚(𝒚𝟎 − 𝒚𝟏) + 𝒊𝒑𝒙(𝒙𝟎 − 𝒙𝟏) + 𝒊𝒈𝑨,𝒑𝒙,𝒑𝒚,𝒈  

x exp − 2𝑙 α(𝑥 − 𝑥 ) − 2𝑙 𝛽(𝑦 − 𝑦 ) − 𝑁𝑙 (α + 𝛽 ) − 𝑞𝑁2 (𝐸 𝛼 + 𝐸 𝛽)  x exp − 12 𝜔 + 𝜔 + λ𝑙2 𝑥 𝜔 − 𝑦 𝜔 + 𝑖𝑝 𝑙𝜔 + 𝑖𝑝 𝑙𝜔 𝑑𝑣  𝐱  𝐞𝐱𝐩 ∫ 𝝀𝒍𝟐𝟐 𝑩𝒙 𝒅𝑩𝒚 − 𝑩𝒚 𝒅𝑩𝒙𝑵𝟎 𝒅𝒗 𝒅𝝁(𝝎𝒙 )𝒅𝝁 𝝎𝒚 𝒅𝒑𝒙 𝒅𝒑𝒚 𝒅𝒈, (25) 

where 𝐶  is the collective normalization constant, the variables 𝑝  and 𝑝  came from the Fourier 
integral representations of the Donsker delta functions in equations (11) and (12), and ∫ 𝐵 𝑑𝐵 −𝐵 𝑑𝐵 ) 𝑑𝑣 corresponds to the Levy’s stochastic area[9]. 

We again note that the probability distribution in equation (25) is in two dimensional Brownian 
motion. This can be realized in the probability space of one-dimensional white noise as inequation (17) 
resulting to  𝑷𝑬(𝑨, 𝑵) = 𝑪𝟏𝟖𝝅𝟑

𝐫𝟏
𝐫𝟎 𝐞𝐱𝐩 − 𝟏𝟐 < 𝜔, 𝜔 > +𝜆𝒍𝟐 < 𝝎, 𝑭𝒔𝝎 >,𝒑𝒙,𝒑𝒚,𝒈  

x exp − 2𝑙 α(𝑥 − 𝑥 ) − 2𝑙 𝛽(𝑦 − 𝑦 ) − 𝑁𝑙 (α + 𝛽 ) − 𝑞𝑁2 (E α + E 𝛽)  x exp (𝑖 < 𝜔, 𝑝 𝑙 + 12 𝑖𝜆𝑙𝑥, 𝑋[ , ] + 𝑝 𝑙 + 12 𝑖𝜆𝑙𝑦, 𝑋[ , ] >)  𝐱  𝐞𝐱𝐩{+𝒊𝒑𝒙(𝒙𝟎 − 𝒙𝟏) + 𝒊𝒈𝐀} 𝒅𝝁(𝝎)𝒅𝒑𝒙 𝒅𝒑𝒚 𝒅𝒈. (26) 

Furthermore, equation (26) can be rewritten, as in equation (17), as 𝑷𝑬(𝑨, 𝑵) = 𝑪𝟏𝟖𝝅𝟑 ∫ ∫ 𝑻(𝚽)𝒅𝒑𝒙 𝒅𝒑𝒚 𝐞𝐱𝐩(𝒊𝒈𝑨)𝒅𝒈 ,𝒑𝒙,𝒑𝒚,𝒈  (27) 

with𝑇(Φ) given in equation (19) but with functional 𝚽(𝝎) = 𝑵𝟎𝐞𝐱𝐩 − 𝟏𝟐 < 𝜔, 𝜔 >  +𝜆𝒍𝟐 < 𝝎, 𝑭𝒔𝝎 >  (28) 

and 𝝃 = 𝒑𝒚 𝒍 + 𝟏𝟐 𝒊𝝀𝒍𝒙𝟎, 𝑿[ 𝑵,𝟎] + 𝒑𝒙 𝒍 + 𝟏𝟐 𝒊𝝀𝒍𝒚𝟎, 𝑿[𝟎,𝑵]. (29) 

Performing the T-transform of Φ and integrating over𝑑𝑝  and𝑑𝑝 in equation (27) yields 𝑷(𝑨, 𝑵) = 𝑪𝟏𝝀𝟑𝟐𝝅𝟒𝒔𝒊𝒏 𝝀𝒍𝟐𝑵𝟒 ,𝒈 𝐞𝐱𝐩 − 𝝀𝟐 𝜶 𝒙𝟎′ 𝒚𝟏′ − 𝒚𝟎′ 𝒙𝟏′ + − 𝑵𝒍𝟐 (𝜶𝟐 + 𝜷𝟐) − 𝒒𝑵𝟐𝟐 (𝑬𝟏𝜶 + 𝑬𝟐𝜷) + 𝒊𝒈𝑨  

𝐱 𝐞𝐱𝐩 − 𝝀 𝟒 𝒕𝒂𝒏 𝝀𝒍𝟐𝑵𝟒 (𝒙𝟎 − 𝒙𝟏)𝟐 +  (𝒚𝟎 − 𝒚𝟏)𝟐 − 𝟐𝜶𝒍𝟐 (𝒙𝑵 − 𝒙𝟎) − 𝟐𝜷𝒍𝟐 (𝒚𝑵 − 𝒚𝟎) 𝒅𝒈. (30) 

Rewriting this back to x and y variables using the relations [8] 
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𝒙 = 𝒙 +  𝜶𝒗  and (31) 𝒚 = 𝒚 +  𝜷𝒗 (32) 

with𝛼 =  and 𝛽 = − results to 𝑷(𝑨, 𝑵) = 𝑪𝟏𝝀𝟑𝟐𝝅𝟒𝒔𝒊𝒏 𝝀𝒍𝟐𝑵𝟒 ,𝒈 𝐞𝐱𝐩 𝒒𝑵𝟐 𝑬𝟏𝒙𝟎 + 𝑬𝟐𝒚𝟎 + 𝑵𝒍𝟐 (𝜶𝟐 + 𝜷𝟐)  

𝐱 𝐞𝐱𝐩 − 𝝀𝑵𝟐 𝟒 𝒕𝒂𝒏 𝝀𝒍𝟐𝑵𝟒 (𝜶𝟐 + 𝜷𝟐) + 𝒊𝒈𝒂 𝒅𝒈, (33) 

where 𝜆 = −𝑖𝑔. 
From equation (33), we can consider two limiting cases. For weak electric field, the probability 

density is given by the expression 𝑷𝒘𝒆𝒂𝒌𝑬(𝑨, 𝑵) ≅ 𝑷𝟎(𝑨, 𝑵) 𝟏 + 𝟒𝝅𝒂𝑬𝟐𝑵𝟐𝒍𝟒 − 𝟑𝑵𝒍𝑷𝟎(𝑨, 𝑵) , (34) 

wherea =   and  𝑃 (𝐴, 𝑁) represents the distribution for the area enclosed by the polymer 
loop in the absence of electric field given in equation (22). 

For strong electric field, the probability density is 𝑷𝒔𝒕𝒓𝒐𝒏𝒈𝑬(𝑨, 𝑵) ≅ 𝟐𝟒𝒌𝑩𝑻 𝟓𝝅 𝟏𝟐
(𝐍𝐥𝟐)𝟑𝟐𝑸𝑬 𝐞𝐱𝐩 − 𝒃𝑨𝟐𝑬𝟐 , (35) 

where 𝑏 = . 
Equations (34) and (35)agree with the works of Khandekar and Wiegel in reference [8]. 

3.3. Polymer loop in a gel subjected to crossed electric-magnetic fields 
In this system, the polymer loop which encloses a constant area is subjected to crossed electric-
magnetic fields. For this case, the probability distribution can be written as 
 𝑷𝑬𝑩(𝑨, 𝑵) = 𝑪 𝛅 𝑨 − 𝟏𝟐 𝒙 𝒅𝒚𝒅𝒗 − 𝒚 𝒅𝒙𝒅𝒗 𝒅𝒗𝑵

𝟎 𝐞𝐱𝐩 − 𝟏𝒍𝟐 𝒅𝒓𝒅𝒗 𝟐 𝒅𝒗 𝑵
𝟎

𝒓𝟏
𝒓𝟎  

𝐱 𝐞𝐱𝐩 +𝒒 ∫ (𝐄 ∙ 𝐫 +  𝐁 ∙ �̇�)𝒅𝒗𝑵𝟎  𝒅[𝒓(𝒗)], (36) 

where𝑞is with𝑞′ as the charge of each monomer, 𝐄 = E �̂� +  E 𝚥 ̂ and 𝐁 = (𝐻 x�̇�) with  𝐻 as the 
uniform magnetic field along the 𝑧 axis.  

Following the same procedure prescribed in the previous subsections, equation (36) can be written 
as  𝑷𝑬𝑩(𝑨, 𝑵) = 𝑪𝟐𝝅 ∫ 𝑷𝑬𝑩(𝒈, 𝑵)𝐞𝐱𝐩(𝒊𝒈𝑨) 𝒅𝒈 (37) 

where   𝑷𝑬𝑩(𝒈, 𝑵) = ∫ 𝐞𝐱𝐩 − ∫ 𝑳𝒅𝒗𝑵𝟎 𝒅[𝒓(𝒗)]𝒓𝟏𝒓𝟎  (38) 

and 

1st International Conference in Applied Physics and Materials Science IOP Publishing
IOP Conf. Series: Materials Science and Engineering 79 (2015) 012012 doi:10.1088/1757-899X/79/1/012012

6



 
 
 
 
 
 

 

𝑳𝑬𝑩 = 𝟏𝒍𝟐 𝒅𝒙𝒅𝒗 𝟐 + 𝒅𝒚𝒅𝒗 𝟐 + 𝟏𝟐 𝝀 𝒙 𝒅𝒚𝒅𝒗 − 𝒚 𝒅𝒙𝒅𝒗   

−𝒒(𝑬𝟏𝒙 − 𝑬𝟐𝒚) + 𝒒𝑯𝟐 𝝀 𝒙 𝒅𝒚𝒅𝒗 − 𝒚 𝒅𝒙𝒅𝒗 ; 𝝀 = −𝒊𝒈. (39) 

This expression can be simplified by using the relations 𝒙 = 𝒙 +  𝜶𝒗  and (40) 𝒚 = 𝒚 +  𝜷𝒗, (41) 

where𝛼 =  and 𝛽 = − . 
The probability distribution in terms of these new variables is then 𝑷𝑬𝑩(𝑨, 𝑵) = 𝑪𝟐𝝅 𝚪𝑬𝑩 𝐞𝐱𝐩 − 𝟏𝒍𝟐 𝒅𝒙𝒅𝒗 𝟐 − 𝟏𝒍𝟐 𝒅𝒚𝒅𝒗 𝟐 𝒅𝒗 𝑵

𝟎
𝒓𝟏

𝒓𝟎  

𝐞𝐱𝐩 ∫ 𝝀𝟐 𝒙′ 𝒅𝒚𝒅𝒗 − 𝒚′ 𝒅𝒙𝒅𝒗 𝒅𝒗 𝑵𝟎 𝒅[𝒓(𝒗)]𝒅𝒈, (42) 

where   𝚪𝑬𝑩 = 𝐞𝐱𝐩 − 𝟐𝒍𝟐 𝛂(𝒙𝑵 − 𝒙𝟎) − 𝟐𝒍𝟐 𝜷(𝒚𝑵 − 𝒚𝟎) + 𝒊𝒈𝑨   

𝐱 𝐞𝐱𝐩 − 𝑵𝒍𝟐 𝜶𝟐 + 𝜷𝟐 − 𝒒𝑵𝟐𝟐 (𝑬𝟏𝜶 + 𝑬𝟐𝜷) − 𝒊𝒈𝑵𝟐 (𝛂𝒚𝑵 − 𝜷𝒙𝑵) + 𝒒𝑯𝑵𝟐 (𝛂𝒚𝑵 − 𝜷𝒙𝑵) . (43) 

Equation (42) can be expressed in terms of white noise variables, that is, following the procedure 
prescribed in the previous sections. So we have 𝑷𝑬𝑩(𝑨, 𝑵) = 𝑪𝟏𝟖𝝅𝟑 𝚪𝑬𝑩𝐫𝟏

𝐫𝟎 𝐞𝐱𝐩 𝝎𝒙 𝟐 + 𝝎𝒚 𝟐 + 𝒊𝒑𝒙 𝒍𝝎𝒙 + 𝒊𝒑𝒚 𝒍𝝎𝒚 𝒅𝒗𝑵
𝟎,𝒑𝒙𝒑𝒚,𝒈  

x exp (−𝑖𝑔 + 𝑞𝐻)𝑙2 𝑥 𝜔 − 𝑦 𝜔 + 𝑖𝑝 𝑙𝜔 + 𝑖𝑝 𝑙𝜔 𝑑𝑣 𝑑𝑝 𝑑𝑝  𝐱  𝐞𝐱𝐩 (−𝒊𝒈 + 𝒒𝑯)𝒍𝟐 ∫ 𝟏𝟐 𝑩𝒙 𝒅𝑩𝒚 − 𝑩𝒚 𝒅𝑩𝒙𝑵𝟎 𝒅𝒗 𝒅𝝁(𝝎𝒙 )𝒅𝝁 𝝎𝒚 𝒅𝒈, (44) 

where𝐶  is the collective normalization constant. 
In the probability space of one-dimensional white noise as presented in reference [9], the 

probability distribution may be written as 𝑷𝑬(𝑨, 𝑵) = 𝑪𝟏𝟖𝝅𝟑 𝚪𝑬𝑩𝐫𝟏
𝐫𝟎 𝐞𝐱𝐩 − 𝟏𝟐 < 𝜔, 𝜔 > +(𝜆 + 𝑞𝐻)𝒍𝟐 < 𝝎, 𝑭𝒔𝝎 >,𝒑𝒙𝒑𝒚,𝒈  

               x 𝒆𝒙𝒑 𝒊 〈𝝎, 𝒑𝒚 𝒍 + 𝟏𝟐 𝒊𝝀𝒍𝒙𝟎, 𝑿[ 𝑵,𝟎] + 𝒑𝒙 𝒍 + 𝟏𝟐 𝒊𝝀𝒍𝒚𝟎, 𝑿[𝟎,𝑵]〉 𝒅𝝁(𝝎)𝒅𝒑𝒙 𝒅𝒑𝒚 𝒅𝒈. (45) 

Integration over 𝑑𝜇(𝜔) can then be evaluated using the T-transform of Φ and we can write 
equation (45) as  𝑷𝑬(𝑨, 𝑵) = 𝑪𝟏𝟖𝝅𝟑 ∫ ∫ 𝑻(𝚽)𝒅𝒑𝒙 𝒅𝒑𝒚 𝐞𝐱𝐩(𝒊𝒈𝑨)𝒅𝒈 ,𝒑𝒙,𝒑𝒚,𝒈 , (46) 

where𝑻(𝚽)is given by equation (19). For this case, the white noise functional 𝚽has the form 
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𝚽(𝝎) = 𝑵𝟎𝐞𝐱𝐩 − 𝟏𝟐 < 𝜔, 𝜔 >  +(𝜆 + 𝑞𝐻)𝒍𝟐 < 𝝎, 𝑭𝒔𝝎 >  (47) 

with 𝝃 = 𝒑𝒚 𝒍 + 𝟏𝟐 𝒊𝝀𝒍𝒙𝟎, 𝑿[ 𝑵,𝟎] + 𝒑𝒙 𝒍 + 𝟏𝟐 𝒊𝝀𝒍𝒚𝟎, 𝑿[𝟎,𝑵]. (48) 

Calculations of the T-transform of Φresults to 𝑻(𝚽) = 𝐜𝐨𝐬 (𝝀 + 𝒒𝑯)𝒍𝟐𝑵𝟒 𝟏 𝐞𝐱𝐩 −𝟏(𝝀 + 𝒒𝑯)𝒍𝟐 𝐭𝐚𝐧 (𝝀 + 𝒒𝑯)𝒍𝟐𝑵𝟒 𝒑𝒚𝟐 𝒍𝟐 − 𝒊(𝝀+ 𝒒𝑯)𝒍𝟐𝒙𝟎, 𝟐𝒑𝒚  

𝐱𝐞𝐱𝐩 𝟏(𝝀 𝒒𝑯)𝒍𝟐 𝒕𝒂𝒏 (𝝀 𝒒𝑯)𝒍𝟐𝑵𝟒 𝒑𝒙𝟐 𝒍𝟐 − 𝒊(𝝀 + 𝒒𝑯)𝒍𝟐𝒚𝟎, 𝟐𝒑𝒙 − (𝝀 𝒒𝑯)𝟐𝒍𝟐(𝒙𝟎, 𝟐 𝒚𝟎, 𝟐)𝟒 . (49) 
The integrations over 𝑑𝑝  and 𝑑𝑝 in equation (46) are done using one-dimensional Gaussian 

integral. Rewriting the probability distribution, equation (52), back to x and y variables and identifying 
the normalization constant [8] results to 𝑷𝑬𝑩(𝑨, 𝑵) = 𝑲(𝑬, 𝑯) ∫ ,𝒈 𝒖𝒔𝒊𝒏𝒉𝒖 𝐞𝐱𝐩 𝟒𝒊𝒖𝑨𝑵𝒍𝟐 − 𝑵𝟑𝒍𝟐𝒒𝟐𝑬𝟐𝟕𝟐 𝒖𝟐 𝒅𝒖, (50) 

where 𝑢 = 𝑁𝑙 (𝑔 + 𝑞𝐻𝑖) and 𝑲(𝑬, 𝑯) = 𝟖𝐬𝐢𝐧 𝑵𝒍𝟐𝒒𝑯𝟒𝑵𝟐𝒍𝟒𝒒𝑯𝝅 𝐞𝐱𝐩 𝑵𝟑𝒍𝟐𝒒𝟐𝑬𝟐𝟒𝟖 + 𝒒𝑯𝑨 + 𝑬𝟐𝑵𝒍𝟐 − 𝟏𝑯𝟐 + 𝑵𝒍𝟐𝒒𝟒𝑯𝐭𝐚𝐧 𝑵𝒍𝟐𝒒𝑯𝟒 . (51) 

Similar in section 3.2, the structure of equation (51) is complicated and so limiting cases are 
considered [8]. We further note that the integrand in equation (51) only affects electric field which 
means limiting cases are for electric field only.  

In the presence of constant magnetic field and weak electric field, the probability density is given 
by the expression  𝑷𝑬𝒘𝑩(𝑨, 𝑵) ≅ 𝑲(𝑬, 𝑯) 𝒑𝟎(𝝃) − 𝜷 −𝝅𝟐𝒑𝟎(𝝃) + 𝟑𝒑𝟎𝟐(𝝃) , (52) 

whereβ = , ξ =  and  p (ξ) = . And the probability distribution in the presenceof 

magnetic field and strong electric field is given by 𝑷𝑬𝒔𝑩(𝑨, 𝑵) ≅ 𝑲(𝑬, 𝑯) 𝒌𝑩𝑻𝒍𝑸𝑬 𝟕𝟐𝟎𝝅𝑵 𝐞𝐱𝐩 − 𝟒(𝟕𝟐𝟎)𝐤𝐁𝟐𝐓𝟐𝑵𝟑𝐥𝟔𝐐𝟐 𝑨𝟐𝑬𝟐 . (53) 

For both limiting cases, results agree with reference [8] when magnetic field is switched off.  

4. Conclusion 
In this paper, we have obtained the expression for the probability distribution of the area enclosed by a 
polymer loop under different external fields: constant electric field and crossed electric-magnetic 
fields. The method used in the evaluation of the probability distribution is white noise analysis where 
the polymer loop is represented by various paths of a Brownian motion. 
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