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Abstract. This paper presents derivation of the probability distribution for the area enclosed by
a polymer loop in a gel and under different external fields using white noise analysis. In this
context, the polymer loop is represented by Brownian paths and its immersion in a gel
constraints it to occupy a constant area[1]. The external fields considered are electric field, and
crossed electric-magnetic fields.

1. Introduction

The Hida-Streit’s infinite dimensional analysis, otherwise known as white noise analysis has been used
successfully as a framework for stochastic and infinite-dimensional systems. This has been applied to
several disciplines, most notably in quantum physics [2,3] and statistical mechanics[4,5]. Its
applicationin solving polymer conformation problems was first introduced by C. Bernido and M. V.
Bernido where they studied statistical mechanical properties of polymers with length dependent
potentials[4,5], polymer chirality [5]and winding probability of entangled polymers[6].

As an extension to the works of C. Bernido and M. V. Bernido, we present in this paper the use
white noise analysis in getting the probability distribution for the area enclosed by a polymer loop in a
gel under different external fields. In this context, the polymer conformation is viewed as Brownian
paths and the steric and topological effects of others polymers in a gel constraints the loop to enclose a
fixed area[1,7]. An example of a polymer in a gel under an external field is DNA electrophoresis
where the DNA is subjected by an external electric field. In this paper, we generalize the probability
distribution to include other possible external fields.

This paper is organized as follows: we give a brief review of the path integral of the probability
distribution for the area enclosed by a polymer loop in a gel as presented in [7]. Then we generalize
the formulation to include external fields where we consider time-independent electric fieldand
crossed electric-magnetic fields. We then translate the probability distribution in the language of white
noise analysis and evaluate the distribution using the T- and S-transforms [5]. We note that the same
polymer system with and without electric field was also studied by Khandekar and Wiegel [7,8] using
straight forward evaluation of the path integral describing the system.
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2. Path integral for the distribution of the area enclosed by a polymer loop under external fields
An unconstrained polymer may be viewed as a polymer in a dilute solution where the interaction
between the solvent and the polymer is negligible. The Wiener integral representation of the
probability density of this polymer with ends fixed at o and 4 is given by [7]

P(rq,N|ry,0) —f 1exp [ lzf ( )dv]d [r()], (1)

where for non-interacting polymer,! is the distance between two monomers, and v is the number of
monomers with increasing value from 1 to N.

For a polymer in a gel or a polymer solution, the steric and topological effects of others polymers
constraints the polymer to enclose a constant area A [1,7] making the probability distribution for the
area enclosed as

T

P(AN)—Cfr1 [A f (E—ydv)dv]exp[ lzf d—v dv]dr(v) (2)

where C is the normalization constant and

f ( dv ) dv (3)

is the algebraic area which is enclosed by the polymer loop configuration r(v). The sign convention is
that A is counted positive if the enclosed area is located to the left of the curve when traced by
increasing number of monomers, v, otherwise it is negative [7].

When this polymeric system is under an external field with potential V, we can write the
probability distribution in general form as

P(AN) = Cf:olli[A— f:%(x%— %) dv] exp [—llzfoN (%)2 dv — f(;v Vdv] dir(v)]. 4)

The effect of the potential is added on the “kinetic’ part of the path integral.
Rewriting the Dirac delta as Fourier integral, we have the probability density in equation (4) as

P(A,N) == [ P(g,N)exp(igA) dg (5)

where
P(g.N) = ["exp (- [ Ldv)d[r(v)] (6)

and
L=3[(5) + ()] +50 (2 -v5) +v. )

We then evaluate the probability distribution, equation (5), using white noise analysis. In this
method, the paths are parametrized in terms of Brownian motion. Essential steps of the evaluation are
presented in the next section.

3. Probability distribution in the framework of White Noise Analysis
In writing the probability distribution in equation (5) to the language of white noise analysis, we first
parametrize the paths as

x(L) = x¢ + 1B, (1) and (8)

y(L) =yo + LBy (D), ©9)
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where B, =f0Na)xdv and B, =f0Na)ydv are Brownian motions in the x and y coordinates

respectively parametrized by vthat runs from 0 to N, w(v) is the white noise variable, [ is the distance
between monomers and L is the length of the polymer loop.

In white noise analysis, the integral over the paths d[r(v)] becomes an integral over the Gaussian
white noise du(w) with relation given by [5]

d[r()] - Nayexp [3y (0. + 0,2)dv | du(w,)du(w,), (10)

where N, is an appropriate normalization constant. We further note that in the process of path
parametrization done in equations (8) and (9), only the initial point is fixed. Hence we use the Donsker
delta functions

S§(x(L) — x41) = 8(xg + IB,(l) — xy)and (11)

8(y(L) —y) = 8(yo +1B,() — y) (12)

to fix the endpoints. For a polymer loop, the final and initial points are the same simplifying equations
(11) and (12) as8(B, (1)) and 8(B, (1)) respectively. These Donsker delta functions are then written
into their Fourier integral representations.

These are the initial preliminary steps in writing a Wiener integral representation of the polymer
loop in the language of white noise analysis. The bulk of the evaluation of the probability distribution
is done via the T-transform, the mathematical tool used to evaluate the integration over the Gaussian
white noise measure du(w).

In the following subsections, we consider different systems in applying white noise analysis.

3.1. Polymer in a gel in the absence of an external field
When there is no external field, the distribution for the area enclosed by the polymer loop is given by

Po(4,N) = [* " Po(g, N)exp(igA) dg (13)
where
Po(g.N) = [[" exp (- f; Ldv)d[r()] (14)
and
=3[ + (@) ] +ha (<2 -v5). (t5)
Writing this distritiution T the Iangl;uage of white noise analysis yields
P(A,N)=% j j j exp[—%joN(wxz+wz)dv——j (B,dB, — B,dB,)dv

—0,g —O.PxPy To

X exp {f [ (xowy yowx) + (lpxlwx + lpylwy)] dv} exp(igA) du(w)dp,dp,dg, (16)

where C; is the collective normalization constant, the variablesp, and p, came from the Fourier
integral representations of the Donsker delta functions in equations (11) and (12), andfoNi(Bdey -

B, dBy) dv corresponds to the Levy’s stochastic areawhich is equal to A[9].

Notice that the probability distribution in equation (16) is in two dimensional Brownian motion.
This can be realized in the probability space of one-dimensional white noise as presented in
[9]resulting to
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+00 i

+o00
Cq 1 .12
Po(A:N)=@ J j J exp [—E<a),a)> —igl* < w, F;w >]

—00,g —0pxpy  To
, 1 1 ,

X exp [(l < w, (pyl + Eglxo) Xi—no) + (pxl + Eglyo)X[o_N]. >)] du(w)dp.dp,exp(igA)dg.(17)

The term< w, F,w >which can be expanded asz2 w(W)F,(v,v)ww)" dvdv' corresponds to the

Levy’s stochastic area [9].
We note that equation (17) can be written as

C o o o .
PAN) =50 I [, T(®)dp.dp.exp(igd)dg ., (18)

whereT (®)is the T-transform of the functional ®(w):

T(®) = [ exp (i < w,§ >)®(w) dp(w) (19)
with

®(w) = exp [—% <w,w> —igl? <w Fo >] (20)
and

1 1
§= (pyl + Eglxo) X(-no t+ (pxl + 5913’0) X[on]- (21)
Calculations of the T-transform of & and evaluation of the integrals in equation (18) yields
-1
Py(A,N) = [2NEcosh? (257)] . (22)

This agrees with the result obtained by Wiegel and Khandekar [7] where they used straightforward
integration over d[r(v)].

3.2. Polymer in a gel subjected to a uniform electric field

In this system, we consider the uniform electric field to be along x and y axes. The contribution of the
electric field on the probability distribution of the area enclosed by the polymer loop is added on the
‘kinetic’ part making the expression for the probability distribution as

N1/ d d 1 (N (dr\2 N

Pg(AN) = Cf:ol 8 [A —Jo E(xd—z - yd—i) dv] exp [—l—zfo (d—:}) dv +q |, E- rdv] dir(v)], (21)

where E = E;i1+ E,j, r=x1+ yj and qis%withq’ as the charge of each monomer and T as the
B

absolute temperature.
Writing the Dirac delta function in its Fourier integral form, the probability distribution becomes

Pz(A,N) = if:r;o Pr(g,N)exp(igA)dg, (22)
2n

where
= N1 [rdxn\2  [dyr\? N1 ydydxr
Pr(g,N) =Tg f:ol exp {— fo 1—2[((1—1) + (d—};) ]dv + fo El(x d—y—y d—f}) dv}d[r(v)] (23)

v

and
2
T = exp [~ Zaley —%0) —5BON —¥) 5@ + ) - L-(Bra+ E:B)]  (29)
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Using the preliminary steps, presented in equations (8-12), we have the probability distribution in

white noise analysis as
+00 +o0o I

Cc
Pr(AN) = 8_1113 J j J exp[ip;,(y() — Y + ipi(xy — x7) + igA]
—%0,g = ,py,Py To

N

2 ’ ’ 2 ’ J; 2 2 qNZ
X exp _l_za(xN_xo)_l_zﬁ(J’N_)’o)_l_z(a + B )_T(E1Q+Ezﬁ)

N1 P\
X exp {-fo [_E (wyr? + a)yrz) + 0 (x(',a)yr — Yowyr) + ipyrloy + ipy,la)yr] dv}
2
x exp{[' [+ (B..dB,, - B, dB,,)| dv}dp(w,)dp(w,, )dp.dp,dg.  (25)

where C; is the collective normalization constant, the variables p, and p, came from the Fourier
integral representations of the Donsker delta functions in equations (11) and (12), and fév % (Bx,dBy, -

B,,dB,,) dv corresponds to the Levy’s stochastic area[9].
We again note that the probability distribution in equation (25) is in two dimensional Brownian
motion. This can be realized in the probability space of one-dimensional white noise as inequation (17)

resulting to
+o0 I

+0o0
Cy 1 )
Pg(A,N) = Py exp [_E <ww>+M < w Fsw >]
—00,g —00,py,Py T
2 , , 2 , , N qN2
X exp [_l_za(xzv —xg) — l_zﬁ(J’N —¥0) — 1_2(0(2 +B?) — - (Eja+ Ezﬁ)]

1 1
X exp {(i <w, (py,l + Eillxb) X[-ny0) T (px,l + Eixlly(',)X[o_N] >)}
x exp{+ipy(xp — x1) + igA}du(w)dp,,dpydg. (26)

Furthermore, equation (26) can be rewritten, as in equation (17), as
Pr(AN) =517 [T T(®)dp,dpyexp(igh)dg (27)

_Oovpx,py

withT (®) given in equation (19) but with functional
®(w) = Nyexp [—% <ww> +A? < w,F,w >] (28)

and
1. 1,
§ = (pyl + 3 ilx) Xy + (Pul + 3 1ALy, ) Xpom) (29)

Performing the T-transform of ® and integrating overdp,, anddp, in equation (27) yields
+ 00

Cq2 Ao, N qN?

P(AN) = ;MZN j exp [——a(xoyl - yoxl) +——(a®+p*) —— (Eya + E,B) + igA]

32mtsin (T) —&,g 2 l 2

}- ! ! ! ! 2 ' ! 2 ! !
X exp {— P (MZN) [(xh —xD? + (yo — ¥y1)?] - _; (xy — x0) — _zf (yn — 3’0)} dg. (30)
an|\ ——
4

Rewriting this back to x and y variables using the relations [8]
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x=x"+ av and (31)
y=y'+ pv (32)
witha = qlﬁ and § = —q%results to
+o00
Cia qN N
P(A N) _—lul\l j exp [—(E1x0+E2y0)+—2(a2 +BZ)]
321T4sm( 2 ) g 2 !
2
X exp —% (a?+ p*) +iga;dg, (33)
4 tan(T)

where 4 = —ig.
From equation (33), we can consider two limiting cases. For weak electric field, the probability
density is given by the expression

4 E
Puvears (4, N) = Po(4,N) 1+ 2

— 3NIP,(A4, N)] (34)

n(NI2)*Q?

23040k} T2

loop in the absence of electric field given in equation (22).
For strong electric field, the probability density is

wherea = and Py(4,N) represents the distribution for the area enclosed by the polymer

24kgT bAz
PstrongE(A: N) = # exp | —— (35)
(NIZ)ZQE
22
where b = %.

Equations (34) and (35)agree with the works of Khandekar and Wiegel in reference [8].

3.3. Polymer loop in a gel subjected to crossed electric-magnetic fields
In this system, the polymer loop which encloses a constant area is subjected to crossed electric-
magnetic fields. For this case, the probability distribution can be written as

1 N N )
1 dx 1
Pgg(A,N) = CJ j dv yd )dv exp _l_z_[ dv
To 0 0
N .
X exp [+q Jo Br+ B-r)dv] d[r(v)], (36)

Whereqiskq—'TWithq’ as the charge of each monomer, E = E;i+ E,j and B = %(H xI) with H as the
B

uniform magnetic field along the z axis.
Following the same procedure prescribed in the previous subsections, equation (36) can be written
as

Pgp(A,N) =—]_ PEB(y, N)exp(igA) dg (37)

where
Pea(g.N) = [ exp (- [ Ldv)d[r(v)] (38)

and
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Lo =3 (@) + () #3265 %)

—q(Eix— Ey) + 5 A(x 2 -y T); A= —ig. (39)
This expression can be simplified by using the relations
x=x'+ av and (40)
y=y+ Bv, (41)
wherea = qlﬁ and g = — %.

The probability distribution in terms of these new variables is then

+0o0 r1 N N2
P = £ [ [ [|-5(5) - 5(22) |av
—00 o 0
exp {J, [%(x'; y' %) av } dir(v))dg, (42)

where
2 7 7 2 ’ ’ .
Igp = exp [_l_za(xN —xp) — l_zﬁ()’N —Yo) + lgA]

lgN qHN

xexp [~ (a? + B7) — = (Eya + E2B) — 2 (ayly — Bxi) + L2 (ayyy — Bxy)|. (43)

Equation (42) can be expressed in terms of white noise variables, that is, following the procedure
prescribed in the previous sections. So we have

+00 +o0 I1

Prp(A,N) = Cl J j j Tgp exp U [(wy? + 0,2) +ipylws +ipylo, ]dv]

— 0,9 —%,pxPy o

N .
(-ig +qH)l | . . .
X exp {J [f (xoa)yr - yoa)x/) +ipylw, + lpy,la)yr] dv( dpxdpy,
0
. N
x exp{(~ig + qm)I* [} 1 (B, dB,, — B,,dB,,)| dv}du(w,)dpu(w, )dg, (44)

where(; is the collective normalization constant.
In the probability space of one-dimensional white noise as presented in reference [9], the
probability distribution may be written as
+00 +o0 I1

C 1
PE(A,N)=8—1_;3 J j jI‘EBexp [—E<a),a)>+(/1+ gM? < w, Fsw >]

—~G0,g —00pxPy To
' Lidlx, 1+ 2idly,)X dpu(w)dp,,dp,,dg. (45
xexp{l (w, (py,l'l'gl le)X[—N,O] +(pxr +50 }’o) [o,~]>} p(w)dp,,dp,,dg. (45)

Integration over du(w) can then be evaluated using the T-transform of ® and we can write
equation (45) as

c
Pg(AN) = ﬁ

+o00 +0o0

L, T(®)dP.dpy exp(igh)dg (46)

whereT (®)is given by equation (19). For this case, the white noise functional ®has the form



1st International Conference in Applied Physics and Materials Science IOP Publishing
IOP Conf. Series: Materials Science and Engineering 79 (2015) 012012 doi:10.1088/1757-899X/79/1/012012

®(w) = Noexp [~ 2 < w,0 > +(A + gH)? < ,F,0 >| (47)

with
1, 1,
§=(pyl+5idlxy ) X[_no) + (Pxl + 5 iAlyy ) X[on): (48)
2 2

Calculations of the T-transform of dresults to

-1
(A+ qH)I’N -1 (A+qH)?N\ [ , )
= [cos——2— t A2 — (A
T(®) [cos n Xp TEwTOIE an n [py i
+ qH)lzx'ozpy,]}
-1 (A+qH)I2N , : (A+qH)% 1% (xy% +y,2)
xexp {(qulz tan( q4 ) [p2%,1%2 — i(A + qH) 1y, *p,. | - 7 } (49)

The integrations over dp,, and dp,,in equation (46) are done using one-dimensional Gaussian
integral. Rewriting the probability distribution, equation (52), back to x and y variables and identifying
the normalization constant [8] results to

Pea(AN) = K(EH) [77 —exp [M 2008 2] gy, (50)

u
NI? 72

where u = N1%(g + qHi) and

SSin(—Nlqu) N2 E? E2N 1 NI2 q
K(EH) = exp |15 + qHA + = ——+—)

N2I*qHn H g Htan(leqH
4

. (51)

Similar in section 3.2, the structure of equation (51) is complicated and so limiting cases are
considered [8]. We further note that the integrand in equation (51) only affects electric field which
means limiting cases are for electric field only.

In the presence of constant magnetic field and weak electric field, the probability density is given
by the expression

Py p(A,N) = K(E,H){po(§) — B[-m?po(®)] + 3p3(D)}, (52)

N12Q2 E2
720k4 T2’

wheref = £=24 and po(§) = —=—. And the probability distribution in the presenceof
N12 2cosh(ﬂ;)

magnetic field and strong electric field is given by
- kgT 720 4(720)KET? (A2
Py p(A,N) = K(E, H) <1QLE /T”> exp |- e &) (53)

For both limiting cases, results agree with reference [8] when magnetic field is switched off.

4. Conclusion

In this paper, we have obtained the expression for the probability distribution of the area enclosed by a
polymer loop under different external fields: constant electric field and crossed electric-magnetic
fields. The method used in the evaluation of the probability distribution is white noise analysis where
the polymer loop is represented by various paths of a Brownian motion.
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