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Abstract. In this paper, we introduce the Extracting specific human 3D skeleton point system 

based on monocular tracking. The system mainly consists of two parts. The first part is the 

detection and tracking of specific human body. This article uses simple online and real time 

tracking with a deep association metric (DEEP SORT)[1] algorithm, which is simple but 

effective, and meets system requirements in terms of efficiency and real-time. The second part 

is to extract the 3D bone points for the specific target of the tracking. We refer to Xingyi 

Zhou's research work[2] in this area. Utilizing the correlation between 2D pose and depth 

estimation subtasks, the training is end-to-end, and the algorithm introduces 3D geometric 

constraints to normalize 3D pose prediction, which is effective without ground truth value 

depth labels. In this paper, the two methods are combined by improvement, and the Extracting 

specific human 3D bone point system based on monocular tracking is designed. It can realize 

the tracking of 3D skeletal points of specific targets. The system has high practical value in 

human-computer interaction, virtual reality and motion recognition.  

1. Introduction 

The problem of human pose estimation has been extensively studied in computer vision. It has many 

important applications in human-computer interaction, virtual reality and motion recognition. The 

existing research work is divided into two categories: 2D pose estimation and 3D pose estimation. Due 

to the availability of large-scale 2D annotated human poses and the emergence of deep neural 

networks, 2D human pose estimation problems have recently achieved great success[1][3]. State-of-

the-art technology enables accurate predictions in a variety of settings. The extraction of 2D bone 

points has made great progress, but the correct rate of understanding and analyzing human-behavior 

when extracting 2D bone point information is still not very high, which prompts us to have three-

dimensional space for human bone points. The research of information and the practical application 

are more appropriate. In [4], it is also confirmed that the use of human body 3D skeletal point 

information is much higher than the correct rate of using 2D skeletal point information. In terms of 

human-computer interaction, the three-dimensional skeleton point information of the human body can 

be accurately obtained, so that the robot can directly respond to human instructions. In this paper, we 

extract the 3D skeletal points based on the information of the two skeletal points, and label the 

detected people to distinguish them to achieve the analysis of specific individual situations in the 

actual application process. It also meets the needs of human-computer interaction. In the previous 

computer vision to obtain three-dimensional information, they generally need binocular camera, multi-

camera camera, or through the method of structure from motion (SFM)[5]. In our system, we use the 
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deep neural network to obtain the 3D bone points of the human body through the monocular camera. 

The requirements for visual equipment are simpler.  

2. 3D Skeleton point extraction module 

For our mission, our proposed network architecture as shown in figure 1. 

 

 

 

 

 

 

figure 1. Proposed network architecture 

Here is a shallow stacking hourglass[1] model with stack=2. The deep regression module contains 

4 consecutive residual and regression modules that can be considered as half hourglass. 

The network is trained in a two-part datasets, the first part of images in the wild with only 2D 

ground truth, the second part of images in the lab with 3D ground truth. 

2.1. 2D Skeleton point Estimation Module 

Here we use the stacked hourglass [2] model as our system’s 2D bone point extraction module, the 

network output is J low-resolution heat map[3], J is the number of joints. Each heat map represents the 

probability distribution of a joint. The peak position on these heat maps is the coordinate position of 

the 2D joint point we want to predict. Because these heat maps are also easily integrated with other 

deep layer feature maps, they serve as input to deep regression module.  

To train this module, the loss function is: 

𝐿2𝐷(𝑌̂𝐻𝑀 , 𝑌̂2𝐷) = ∑ ∑ (𝑌̂𝐻𝑀
(ℎ,𝑤)

− 𝐺(𝑌2𝐷)(ℎ,𝑤))2                                           𝑊
𝑤

𝐻
ℎ (1) 

The loss measures the 𝐿2 distance between the predicted heat-maps 𝑌𝐻𝑀 and the heat-maps G(Y2𝐷) 

rendered from the ground truth 𝑌2𝐷 through a Gaussian kernel [3]. 

2.2. Depth Regression Module 

If only the position of the 2D joint point is used as the input of the depth prediction, and then the 

training is performed according to the corresponding 3D annotation in the datasets, but if you do this, 

the result is not certain. because, in general, a single 2D skeleton has multiple 3D interpretations, so as 

above Here, we combine the J heat maps and other deep layer feature maps output by the 2D bone 

point extraction module by upsampling resize as input to the 3D depth regression module.  J represents 

the number of joints. These features, which extract semantic information at multiple levels for 2D pose 

estimation, provide additional cues for 3D pose recovery.  

According to Zhou et al[2] research, a new loss caused by geometric constraints[6] is proposed for 

weakly labeled data sets. In the absence of a ground truth depth label, this geometric constraint is used 

as an effective regularization of depth prediction. It is based on the fact that ratios between bone 

lengths remain relative fixed in a human skeleton (e.g., upper/lower arms have a fixed length ratio, 

left/right shoulder bones share the same length). 

Specifically, let 𝑅𝑖 be a set of involved bones in a skeleton group i , Here we consider four sets of 

bones: 𝑅𝑎𝑟𝑚={left/right lower/upper arms}, 𝑅𝑙𝑒𝑔={left/right lower/upper legs} , 𝑅𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟={left/right 

shoulder bones},𝑅ℎ𝑖𝑝={left/right hip bones}.  

We let L𝑒 represent the length of the bone e, and 𝐿𝑒
̅̅ ̅ the normal bone length. This value is set to the 

average of the dataset Human3.6M used for training. The ratio of each bone 
𝐿𝑒

𝐿𝑒̅̅ ̅
 in each group 𝑅𝑖 should 

be maintained. So we set the loss function of the geometric constraint of the bone to the sum of 

Input images 

Stacked Hourglass Networks 

Conv layers 

2D pose estimation module 

＋ 

𝑌𝑑𝑒𝑝 Depth regression 

module 

＋ ＋ 
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variance among { 
𝐿𝑒

𝐿𝑒̅̅ ̅
 } e𝑅𝑖: 

𝐿𝑔𝑒𝑜(𝑌̂𝑑𝑒𝑝|Y2𝐷) = ∑
1

|𝑅𝑖|
∑ (

𝐿𝑒

𝐿𝑒̅̅ ̅
− 𝑟𝑖̅)

2
𝑒𝑅𝑖𝑖    Where  𝑟̅𝑖 =

1

|𝑅𝑖|
∑

𝐿𝑒

𝐿𝑒̅̅ ̅𝑒𝑅𝑖
                             (2) 

The length of the bone is a function of the position of the joint, which in turn is a function of the 

predicted depth. Therefore, 𝐿𝑔𝑒𝑜 is continuous and differentiable with respect to 𝑌𝑑𝑒𝑝. This allows us 

to continuously optimize the geometric loss. The loss of the depth regression module is: 

           𝐿𝑑𝑒𝑝(𝑌̂𝑑𝑒𝑝|𝐼 , 𝑌2𝐷) = {
𝑟𝑒𝑔‖𝑌𝑑𝑒𝑝 − 𝑌̂𝑑𝑒𝑝‖

2
, 𝑖𝑓  𝐼

3𝐷

𝑔𝑒𝑜𝐿𝑔𝑒𝑜(𝑌̂𝑑𝑒𝑝|𝑌2𝐷) , 𝑖𝑓𝐼
2𝐷

                                   (3) 

2.3. Training 

We combine equations (1), (2), and (3) as the loss function of  training: 

         L(𝑌̂𝐻𝑀，𝑌̂𝑑𝑒𝑝|I) = 𝐿2𝐷(𝑌̂𝐻𝑀 , 𝑌2𝐷) + 𝐿𝑑𝑒𝑝(𝑌̂𝑑𝑒𝑝|𝐼 , 𝑌2𝐷)                                      (4) 

Since the network consists of two modules and there is a highly nonlinear nature that the geometric 

constraints cause loss, we divide the training process into three steps. In the first phase, we use the 2D 

dataset to train the 2D bone point extraction module. The second phase uses the 2D and 3D datasets to 

initialize the 3D bone point extraction module and fine tune the 2D bone point extraction module. At 

this step we do not enable geometric constraints. The third phase activates the geometric constraints. 

2.4.  Datasets 

MPII-training. MPII dataset[7] is a large field dataset, image data is obtained from online video, and 

artificially annotated 16 2D joint points in the image. The data set contains 25,000 training pictures 

and nearly 3,000 verification pictures, and the human body has a border annotation in the image.  

Human-3.6M. Human 3.6M datase[5] is widely used in 3D human pose estimation. This data set 

contains 3.6 million images captured by the motion capture system in an indoor environment. We 

reduce redundancy by interval sampling, according to the standard scheme uses five subjects (S1, S5, 

S6, S7, S8) as training set and (S9, S11) as our test[8] .  

2.5. An exam Result display 

An exam Result display as shown in figure 2. 

             

figure 2. 3D skeleton point extraction results 

3. Tracking Module 

3.1. Track Handling and State Estimation 

For our tracking module, we draw on the DEEP SORT algorithm[9], which uses a standard Kalman 

filter with a constant velocity motion and a linear observation model. The target we need to track 

contains the center position of the bounding box (u; v), the aspect ratio γ , height h and their 
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corresponding velocity in image coordinates. Among them, we use the boundary coordinates (u, v, γ, 

h) as the direct observation of the object state. 

For a target a we want to track, we first set a threshold Amax and then calculate the number of 

frames since the last successful measurement of the association a. This counter is incremented during 

the Kalman filter prediction, when the target of the tracking is associated with the predicted amount. 

Reset to 0. But when the value of the counter is greater than the threshold Amax, means our mission 

target has left the scene we observed. Then remove from the tracking target collection. For every 

detection target that cannot be associated with an existing tracking target, we set these targets as 

tentative targets in the first three frames, and delete those targets if they are not successfully associated 

with the predicted values in these three frames. We need to explain that the traditional way to resolve 

the correlation between predicted Kalman state and newly arrived measurements is to use the 

Hungarian algorithm to solve the allocation problem. We use a combination of two appropriate 

indicators to integrate motion and appearance information and establish judgment conditions. 

In terms of motion information, we can use the Mahalanobis distance between the predicted 

Kalman state and the new arrival amount to determine whether or not to correlate. 

𝐷𝑚(𝑖, 𝑗) = (𝑑𝑖 − 𝑦𝑖)𝑇𝑆𝑖
−1(𝑑𝑖 − 𝑦𝑖)                                             (5) 

Mahalanobis distance away from the standard deviation of the average track position estimate how 

to consider the state detected by measurement uncertainties. We need to set a threshold for the 

Mahalanobis distance to determine whether it is related. This threshold is calculated by calculating the 

inverse 2 distribution when the confidence interval is 95%. For our four-dimensional measurement 

space, the corresponding Mahalanobis threshold is 9.4877. If the association between the i-th track and 

the j-th detection is acceptable, the evaluation is 1. 

𝑏𝑖,𝑗
(1)

= 1  𝑖𝑓 𝐷𝑚(𝑖, 𝑗) ≤ 𝑡(1)                                                           (6) 

When the motion state of the target is relatively stable, the combination of Kalman prediction and 

Mahalanobis distance is a good correlation measure, but the prediction state derived from the Kalman 

filter frame is only a rough estimate of the target, when occlusion occurs or this metric becomes very 

inaccurate when the movement is unstable. So we introduce the appearance descriptor 𝑟𝑖 and measure 

the minimum cosine distance between the i-th track and the j-th detection. This requires us to save a 

gallery 𝑅𝑘 = {𝑟𝑘
(𝑖)

}𝑘=1
𝐿𝑘  of the last Lk = 100 associated appearance descriptors for each track k.  

𝐷𝑐𝑜𝑠(𝑖, 𝑗) = min {1 − 𝑟𝑗
𝑇𝑟𝑘

(𝑖)
|𝑟𝑘

(𝑖)
𝑅𝑖}                                             (7) 

We also set a threshold for the cosine distance to determine if it is related. 

𝑏𝑖,𝑗
(2)

= 1 𝑖𝑓 𝐷𝑐𝑜𝑠(𝑖, 𝑗) ≤ 𝑡(2)                                                           (8) 

Appearance descriptors are derived from convolutional neural networks, In simple terms, using a 

convolutional neural network to extract the multidimensional feature vector of the target. so the 

appropriate threshold is obtained from the training set. We will introduce the structure of specific 

network in the following sections. 

The Mahalanobis distance indicator determines the possible object position information based on 

motion, which is very effective for short-term prediction. The cosine distance is an indicator that takes 

into account the appearance information. If the motion state is unstable, the appearance information is 

useful for recovering the identity after occlusion. We use the weighted combination of these two 

metrics. 

𝐶𝑖,𝑗 = 𝐷𝑚(𝑖, 𝑗) + (1 − )𝐷𝑐𝑜𝑠(𝑖, 𝑗)                                            (9) 

The algorithm takes into account that when the target we are tracking is occluded for a period of 

time, the Kalman filter adds more uncertainty to the target prediction, especially when the two targets 

that are being tracked compete for the same detection, the Mahalanobis distance indicator will How to 

add more uncertainty, so a matching cascade was introduced to solve this problem. 

As input we provide the set of track T and detection D indices as well as the maximum age Amax. 

Then calculate the association cost to select the set that can be associated, then we iterate the age 
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Amax to solve the linear assignment problem in the age increment. Next, the tracking target set Tn 

associated with the detection in the last n frames is selected, next we solve the linear assignment 

between the tracking target and the mismatch detection in the set Tn, and finally update the matched 

and unmatched detection sets and return. 

3.2. Deep Appearance Descriptor 

According to the above, the appearance descriptor of the algorithm is obtained by a neural network 

trained by[10] a large pedestrian recognition data set containing 1.1 million images of 1261 

pedestrians. The advantage of using deep neural networks is that they can be accelerated with GPU, 

which is very suitable for online tracking. 

The neural network applied in the algorithm first accesses two convolutional layers and one 

maximum pooling layer, followed by six residual blocks, and maps the extracted 128-dimensional 

global features to the dense layer. It fits the variables we need to calculate the cosine distance. 

3.3. Result display 

Result display as shown in figure 3. 

    

Figure 3. Tracking module tracking results 

4. 3D Skeleton Point Extraction Modul and Tracking Module Fusion 
Our main goal is to take advantage of the capabilities of the two modules above to achieve our task of 

tracking specific targets and extracting their 3D bone points. For our follow-up work, it provides the 

basis for the action recognition, human-computer interaction and other work of specific targets. 

The system uses YOLOV3[8]to detect the human body. But there are two issues that need to be 

faced in the process of convergence. One is that the target extracted by our tracking module returns in 

the form of a bounding box, but the border we get sometimes cannot completely contain the target. We 

have statistics for all test sets, and the tracking module the result of the operation, manual labeling 

measurement, and the curve fitting, the initial solution is to expand the length and width of the border 

to the original 1.126 according to the original aspect ratio of the extracted bounding box.  

The second problem is that the general shape of the human body is rectangular, and the picture 

input by our 3D extraction module is fixed 256 × 256 size. This can cause serious deformation of the 

human body and cause huge errors. The solution we take here is to scale or expand a long side of the 

bounding box to 256 pixels according to the original bounding box aspect ratio, and to fill or expand 

the short side with less than 256 pixels to complement the white pixels. 

We combine the two modules described in this article to build our visual system for tracking specific 

human body extraction of 3D skeletal points based on monocular. The overall work flow chart of the 

system as shown in figure 4 

 

 

 

 

 

Figure 4. The overall work flow chart of the system 
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5. Experiment And Discussion 

5.1. Single target tracking fusion experiment 

Single target tracking fusion experiment as shown in figure 5 

                  

(a)Input                     (b) Front view                   (c) Side view                  (d) Top view 

Figure 5. Single target tracking extraction skeleton point 

5.2. Multi-target tracking fusion experiment 

Multi-target tracking fusion experiment as shown in figure 6. 

                       

(a) Object1                                                                    (b) Object2 

Figure 6. Track target with Object1 and Object2 and extract bone points 

5.3. Discussion 

At present, there are still many improvements in our system. First of all, the network of our system is 

not end-to-end. The next work can use the extraction module to extract the network of apparent 

information and the extraction features used by 3d skeleton points. The network is combined to strive 

for end-to-end training. Currently we are using single frame prediction, and we have discarded 

important time information. The next work can consider how to use the information in time. Another 

point is that our system needs to be configured to run on our robots. We can consider deploying a large 

amount of computing to the cloud processor while the system is running. This is also the trend of the 

development of robots. 
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