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Abstract. The finite element method of solution with curved triangles to solve the three-

dimensional, fully-developed Darcy–Brinkman–Forchheimer flow equation in channel with 

curved side is solved using quasi-linearization and Gauss-Seidel iteration method. Exhaustive 

numerical computation and numerical experimentation reveals  the parameters’ influence on 

the velocity distributions.. A salient feature of the method adopted in the present paper is that it 

ensures that the errors are almost equally distributed among all the nodes. It is found that the 
irregular cross-section channel with upward concave boundary decelerates the flow. Numerical 

experimentation involved different order curved triangular elements and extensive computation 

revealed that the quintic order curved triangular element yields the desired solution to an 

accuracy of 10-5. The finite element method is found to be very effective in capturing boundary 

and inertia effects in the three-dimensional, fully-developed flow through porous media. 

Further, it succeeds in giving the required solution for large values of Forchheimer number 

when shooting method fails to do so. The method can be easily employed in any other irregular 

cross-section channel. 

1. Introduction 
The importance of porous media in practical applications is well known in the literature (see Nield and 

Bejan [1], Vafai [2], Rudraiah et al. [3]). Many eminent researchers advocated to have boundary and 

inertia effects in flow equations of porous media. The recent work of Skjetne and Auriault [4]  
provides new insights on steady, non-linear flow in porous media. Also the authors Calmidi and 

Mahajan [5] presented the non-linear, non-Darcy equation as an excellent candidate for description of 

flow in metal foam porous media. The work of Khaled and Vafai [6] take us from extra-corporeal 
application situations into corporeal flows. Their [6] work presents a non-linear flow model for high 

perfused skeletal tissues. In all these works, and many more, high flow rate and /or high permeability 

in porous media warrants the quantification of the departure from Darcy’s law in terms of Brinkman 
friction and super-linear drag, the former arising due to solid boundaries and the latter caused by form 

drag due to the solid matrix. The analytical solution of upstream velocity profile for nonlinear flow 

model in porous channel is determined in Ramos [7]. Restricting our attention to uni-directional flows, 
here we may recall two extremely important works of Vafai and Kim [8], and Nield et al. [9] that deal 

with forced convection in a channel filled with a porous medium. A steady, uni-directional, non-

linear, non-Darcy flow was assumed in these works. The above two works concern exact solutions of 
the non-linear two-point boundary-value problem arising in the study. The non-linearity in the 

governing quasi-linear differential equation is a quadratic function of velocity.  In literature, the 

nomenclature attached with this friction is either after the name of Forchheimer [10] or Ergun [11]. In 
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so far as the Darcy friction and viscous shear is concerned, there is a need to have two viscosities 

(actual fluid viscosity and effective viscosity) in the equation (Lauriat and Prasad [12] and Givler and 

Altobelli [13]). In the present problem we consider the non-Darcy effects due to both boundary and 
inertia. Poulikakos and Renken [14] performed a numerical study of boundary and inertial effects on 

porous medium flow and heat transfer. Parang and Keyhani [15] studied the effect of boundary and 

inertia effects on mixed convection in an annular region. Hooman [16], Hooman and Gurgenci [17], 
Sharma et al. [18] and Allan and Hamdan [19] have recent  numerical works on non-linear flow model 

in porous media. In the most recent works, natural convective flow and heat transfer of nanofluids in 

different channels with porous matrix is investigated with the help of Darcy-Forchheimer-Brinkman 
model[32,33]. 

 

In spite of there being works reporting solution of the Darcy–Brinkman–Forchheimer equation for 
fully developed two-dimensional rectangular channel, the need to consider irregular cross-section 

porous channels in many applications necessitates to revisit the problem[30]. In article curved 

elements are employed with the basis functions chosen to fit the curved boundary of the irregular 
cross-section. Practical problems  involving complex curved boundary domains pose  so much 

computational hardship for finite difference and classical finite element computations. Curved 

triangular elements with one curved side and two straight sides can map the curved domains better 
than using the three straight sided triangular elements. Ergatoudis et al. [20] has discussed about the 

use of curved triangular elements in structural mechanics. The use of parabolic arcs, the derivation of 

the iso-parametric transformation involving the one curved side and two straight sides are given in the 
works of  Zienkiewicz [21], Macleod and Mitchell [22],  Rathod and Karim [23, 24], and Rathod et al. 

[25]. 

2. Mathematical formulation 
In the case of steady state fully developed flow, we have unidirectional flow in the z -direction inside 

the tubes in porous channels involving both regular and irregular boundary(see Figs.1a), the Darcy–

Brinkman–Forchheimer momentum equation  with velocity ),( yxu  is  
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Non-dimensionalise Eq. (1) using the following definitions: 
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Substituting Eq. (2) in the Eq. (1), we get 

 
2 2

2 2
2 2
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  
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,     (3) 

 

where,

 




  viscosity ratio (Brinkman number), 




2
2 h

 (porous parameter), 
                          

Re Ru h dP
dZ

   (Reynolds number) and RebCF   (Forchheimer number).  
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At this juncture we note that the Brinkman and Darcy numbers used here are actually the inverse of 

the classical definitions. The definition of the Brinkman, Darcy and Forchheimer numbers in Eq. (3) is 
the same as that used in Nield et al. [9]. Equation (1)’s non-dimensional form is Eq. (3). We solve Eq. 

(3) subject to the following boundary condition: 

0U  on  ,         (4) 

where   is the boundary of the cross-section   (see Figs. 1b).  

 
The field problem governed by Eqs. (3) and (4) is solved by using the Galerkin weighted residual 

method (see Bathe [26], Zienkiewicz et al. [27] and Bhatti [28]. The boundary    in Figs. 1b is 

partitioned into many triangular elements e
 
as shown in Fig. 6 so the boundary   is also divided 

accordingly. Quadratic, cubic, quartic and quintic order curved triangular elements with one curved 

side and two straight sides are used in the present paper (see Figs 2-7). The function U  within the 

curved triangular element is given as  





NP

i
ii UNU

1
),(  ,       (5) 

where iU ’s are unknown values of U and iN ’s are Lagrange interpolants or shape functions for the 

standard triangular element and  
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NP  

The point transformation for the curved triangular elements with one curved side and two straight 

sides can be expressed in terms of the four points )4,3,2,1( it i  is given by 

 YXtttnnt
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where 5,4,3,2n for the quadratic, cubic, quartic and quintic curved triangular elements respectively 

for Figs. 2–5. The detailed derivations are shown in the works of Rathod et al. [25]. 

By using the transformation in Eq. (6), the Jacobian ),( J  can be expressed as: 
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Finite element equations for each of the triangular elements for Eq. (3) is obtain by using the Galerkin 

method of weighted residuals, we get following finite element equation for each element as 
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https://en.wikipedia.org/wiki/Method_of_mean_weighted_residuals
https://en.wikipedia.org/wiki/Method_of_mean_weighted_residuals
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ji and  
takes the values from 1 to NP  in the Eq. (8). Using Gauss quadrature rules over standard 

given in Rathod et al. [30,31], the Eq. (8) integrals can be numerically evaluated.  
 

Assembling is done after matrices eeee EBGD  and,,  related to each element are calculated to get 

the global matrices EBGD and,, related to the whole physical domain. On imposing the boundary 

conditions , we get  

111 }{}{}.{][   mmmmm EBUGD  or  111 }{}{}.{][   mmmmm EBUH ,  (10) 

where  

jijiji GDH ,,,  .  

We get a system of m nonlinear algebraic equations in m unknown interior velocities  iU   in Eq. (10). 

We solve the Eq. (10) by first converting it to quasi-linearized system. Eq. (10) and then applying 

Gauss-Seidel iterative formula.  Eq. (10) in the quasi-linearized form for 3m can be written as: 

  133,122,11111,1 BUHUHUUEH  , 

  233,22222,211,2 BUHUUEHUH  , 

  33333,322,311,3 BUUEHUHUH  .
     

(11) 

Gauss-Seidel iterative formula for solving Eq. (11) can be rewritten as: 
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(12) 

The convergence criteria can be set as: 

Tol1  kk
ii

UU , 
        

(13) 

where k is the iterative number and Tol  is an acceptable tolerance. 

 

 

3. Results and discussion  
The present work intends to propose the finite element method for solving a non-linear, non-Darcy 

equation with quadratic drag.  Before we embark on a discussion of the solution we note here that the 

definition of Brinkman and Darcy numbers as used in the paper is the inverse of the classical 
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definitions.  High-porosity channels of regular or irregular cross-sections are considered for 

investigating Newtonian fluid flow through it. The boundary effects of the physical problems 

involving the curved domains are not easily captured by the finite difference and classical finite 
element method with straight sided triangular elements.  Hence, the curved triangular elements with 

one curved side and two straight sides are used in solving the field problems involving curved 

boundaries. In solving the present partial differential equation, we get the product of the global 
derivatives as in Eqs. (8b)&(8c). The higher order bivariate Jacobians in the denominators of the 

integrand in Eq. (8c) imposes the more numerical integration cost in getting the accurate numerical 

values. The prime reason for the huge computational cost escalation in evaluating Eq. (8c) is 
contributed by higher order bivariate Jacobians of the iso-parametric point transformations for cubic, 

quartic and quintic order triangular elements, since three, four and five are the orders of the iso-

parametric point transformations for the cubic, quartic and quintic order curved triangular elements. 
So, the huge computational burden can be reduced by using the second order sub-parametric 

transformations (parabolic arcs) of Eq. (6) for all the order triangular elements. Hence, we get a linear 

bivariate polynomial as Jacobian for all these higher order sub-parametric transformations as in Eq. 
(7); See Rathod et al. [25].  Therefore, substantial computational cost is reduced in computation of Eq. 

(8c). Newton-Raphson method gives us a very efficient means of converging to roots of non-linear 

system of algebraic equations, if we have a sufficiently good initial guess for the initial 
approximations for all the unknown velocities at nodes, but it’s very difficult to guess for the present 

problem. Hence, we use a quasi-linearization and Gauss-Seidel iteration method to solve the system of 

non-linear algebraic equations in Eq. (10) and we have given single initial value guess for all the 

unknown velocities at nodes and we set 
-610Tol  . The computation for  cross-section with 8 

triangular elements  for the cross-sections of Fig. 1b, is depicted in Fig. 6. We have used sub-

parametric quadratic, cubic, quartic and quintic order triangular elements as in Figs. 2-5 to do the 
computational experiment. To track the convergence of the solution for the present problem, some 

common nodal points are picked. The coding for the designed algorithm is done in Mathematica 7.0.  

 

Figure 1a. Schematic of physical configuration. 

  
Figs. 2–5 show the mapping of various curved triangles used in the computations into straight 

triangles. We now discuss the results depicted by the Figs.7a–7f. It is  observed that the velocity of the 

fluid through  channel increases when the Forchheimer number F  is zero, which is the solution of the 
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Darcy–Brinkman equation (linear PDE).  In Figs. 7a–7f we clearly see the effect of non-linear form 

drag on the velocity, which is represented by the Forchheimer number F . The velocity decreases as 

the Forchheimer number F  increases for fixed values of Brinkman number  and Darcy number 

 which are depicted in Figs. 7b and 7d. Similarly, the velocity decreases as the Darcy number   
increases for fixed values of Brinkman number  and Forchheimer number F  which is depicted in 

Figs. 7b and 7e or Figs. 7d and 7f. Therefore, the effect of increasing F is to decrease the velocity 

which is similar to the effect of increasing Darcy number   . Comparing the results in Figs. 7a–7c, 

we may make the inference on the effect of Brinkman number  on the flow. All results obtained here 
are in good agreement with the results of Givler and Altobelli [13]. The excellent results on the 

boundary and inertia effects on flow velocity speak about the utility of the method in capturing 

detailed flow features. It is important to mention here that the method succeeds in giving the required 
solution for some parameters’ combination when shooting technique, based on Runge-Kutta-

Fehlber45 and modified Newton-Raphson methods, fails for large values of F . 

 

x y2 y 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

 

Figure 1b. Cross-section of Figure 1a. 

 

            

(a)Unmapped quadratic triangle                 (b) mapped quadratic triangle 

Figure 2. Mapping of a 6-node quadratic curve triangle into standard triangle. 
 



ICONAMMA2018

IOP Conf. Series: Materials Science and Engineering 577 (2019) 012158

IOP Publishing

doi:10.1088/1757-899X/577/1/012158

7

 

 

 

 

 

 

        

(a)Unmapped cubic triangle                (b) mapped cubic triangle 

Figure 3. Mapping of a 10-node cubic curve triangle into standard triangle. 

       

(a)Unmapped quartic triangle                (b) mapped quartic triangle 

Figure 4. Mapping of a 15-node quartic curve triangle into standard triangle. 

 

       

(a)Unmapped quintic triangle                  (b) mapped quintic triangle 

Figure 5. Mapping of a 21-node quintic curve triangle into standard triangle. 
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Figure 6. Description of the 12-element domain descretization of Fig. 1b. 
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Figure 7a. Contour plot for 50,5,8.0 2  F . 
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Figure 7b. Contour plot for 50,5,1 2  F . 
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Figure 7c. Contour plot for 50,5,2.1 2  F . 
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Figure 7d. Contour plot for 100,5,1 2  F . 
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Figure 7e. Contour plot for 50,10,1 2  F . 
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Figure 7f. Contour plot for 100,10,1 2  F
 

 

4. Conclusions 

 The non-linear partial differential Eq. (1) is solved by finite element approach The resulted 

system of equations is naturally non-linear and the solution is obtained by quasi-linearization and 

a simple iterative Gauss-Seidel method. 

 The method is implemented using the mathematical programming package (Mathematica 7.0)  

 The errors are fairly divided among all the nodes by the present finite element method. 

 The desired accuracy of 10-5 in the solution is obtained by the quintic order curved triangular 

element. 

 The present method of finite element can be easily applied to many other practical and complex 

curved domains also. 

 We wish that the present method gives us the required motivation in the usage of the sub-

parametric higher order triangular elements. 

Nomenclature 

eB  Column Matrix for element e  
e
iB  Elements in Column Matrix 

eB  

bC  Form-drag coefficient (nondimensional)  

eD  Square matrix for element e  
e

jiD ,  Elements in square Matrix 
eD  

eE  Column Matrix for element e  
e
iE  Elements in Column Matrix 

eE  

F  Forchheimer number, RebC
 

eG  Square matrix for element e  
e

jiG ,  Elements in square Matrix 
eG  

eH  Square matrix for element e  
e

jiH ,  Elements in square Matrix 
eH  

h  Half channel width 
eJ  Jacobian for element e  
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  Permeability 

iN  Lagrange shape function at node i  

p  Pressure 

P  
R

phP
u

   

Re  Reynolds number 

u  Velocity of the fluid 

Ru  Characteristic velocity 

U  Dimensionless velocity, 

R

u
dPu
dZ

 
 
 

 

zyx ,,  Global space coordinates 

X  
h
xX   

Y  
h
yY   

Z  
h
zZ    

dp
dz


 

Constant applied pressure gradient 

Greek Symbols 


 

Brinkman number, 





 

  Interior of the actual domain

 e  Interior of the element

   Boundary of the actual domain 

 ,  Local coordinates

 
 

Dynamic viscosity 


 

Actual viscosity 


 

Density of the fluid 


 

Porous parameter, 


h

 
 

Subscripts 

ji,
 

Indices 

 

Superscripts 

e
 

Element number 
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