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Abstract. The present work is concerned with the study of the viscoelastic behaviour of
natural rubber in relaxation tests. A phenomenological model is presented to predict the exact
viscoelastic behaviour of natural rubber in a finite strain regime to enhance the experimental
fit accuracy. A rate dependent multiplicative deformation gradient tensor is splitted into elastic
and viscous parts during deformation. Viscoelastic behaviour of natural rubber is introduced
through Jeffrey rheological model with Horgan and Sacoomandy type energy function. A
thermodynamically consistent rate-dependent relaxation time scheme is introduced which results
reduced material parameters, complexity level and the computational time. The developed
constitutive model is validated with stress relaxation test data that depicts the rate-dependent
viscoelastic behaviour of natural rubber.

1. Introduction
Natural rubber is an elastomer which consists of polymers with minor impurities of other
organic compounds. Polymeric materials have wide industrial applications and broad range
of desirable properties. According to the existing research [1], these materials have three-
dimensional network configuration consisting of randomly oriented long molecular chains which
are cross-linked, and tangled among themselves with neighbors. The rate dependent viscoelastic
behaviour of these materials is investigated by Mullins and Tobin [2] in their experimental
work. This observation provides the basis to model the constitutive relation of natural rubber
for its nonlinear rate dependent behaviour. Mathematical modeling of rubber-like materials in
finite viscoelasticity may be formulated using two different approaches commonly [3]. First, the
hereditary integral approach proposed by Simo [4] which utilizes memory functions to investigate
the history integral behaviour on the current stress state. The second approach is based on the
multiplicative deformation gradient tensor. This framework was initially introduced by Green
and Tobolsky [5] and further analyzed by several researchers using either micromechanically
motivated models proposed by Bergstrom and Boyce [6] or continuum based approach proposed
by Reese and Govindjee [7].

Numerous research have been performed on the viscoelastic behaviour of polymeric materials.
The generalized nonlinear viscoelastic model in a compact differential form is proposed by Chung
et al. [8]. Subsequently, a multiplicative deformation gradient tensor is used by Amin et al. [9] to
obtain the constitutive model of finite strain viscoelasticity. Further Clausius-Duhem inequality
is introduced to developed the thermodynamically consistent relationship. The viscoelastic
properties are time dependent and become sensitive due to the variation in temperature also.
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Knauss et al. [10] coined the term sensitivity associated with small volume change and a
constitutive relationship is obtained for nonlinear viscoelastic materials. A phenomenological
one-dimensional constitutive relationship is proposed by Abu-Abdeen [11] that characterizes
the mechanical behaviour of filled natural rubber. The rate dependent behaviour of filled
rubber under cyclic loading condition is analytically presented by Laiarinandrasana et al. [12].
Huber and Tsakmakis [13] proved that the strain field in every linear viscoelastic solid may
be decomposed into two different strain fields. The decomposition is associated with two well-
known spring dashpot model like Poynting Thomson and Zener model. An experimental work
on high damping rubber is performed by Amin et al. [14] and found that there is a fast rate of
decaying of stress during relaxation process in compression regime. The viscoelastic property
of a filled rubber is analysed experimentally at large deformation under uniaxial cyclic loading
condition by Diani et al. [15]. Lejeunes et al. [16] introduced the numerical integration technique
for finite viscoelastic model to analyse the material behaviour. The reliability of this technique
is investigated with three different rheological models. Holzapfel [17] used Maxwell model to
capture the strain induced anisotropy and experimental validation had been performed to observe
time-dependent phenomenon of viscoelastic materials. Bergstrom and Boyce [18] proposed a
constitutive model to analyse the behaviour of elastomeric material at large strain rate which
is the modification of previously reported model [19] by same authors that may capture the
experimentally observed material behaviour under various loading conditions.

Numerous authors have proposed various form of viscoelastic model for polymeric materials,
but most of them lack of simplicity in their formulation and also fit in accuracy with experimental
data. The research area of viscoelasticity is broad and still open for researchers across different
fields for the accurate prediction of this time-dependent mechanical behaviour of viscoelastic
material. Following the modeling techniques of previous literatures for polymeric materials, a
new simplified mathematical model is developed to study the viscoelastic behaviour of natural
rubber in relaxation. The main goal is to predict the stress-time and stress-stretch curves
using model equations that combine enough mathematical simplicity and may allow its use in
describing the complex nonlinear behaviour of natural rubber in different engineering problems.
The material parameters appear in the evolution equation may be easily identified using the
least squares regression method. The main contribution of this work is to present a simple but
reliable alternative parallel approach to predict the viscoelastic behaviour of the natural rubber.

2. Experimental results
2.1. Aim of the experiment
The aim of the experiment is to understand the practical behaviour of the natural rubber in
multistep relaxation test. The practical information of the viscoelastic behaviour of natural
rubber is used to understand the physical mechanism of the chain network clearly. Then
accordingly, a mathematical model is developed to study the rate dependent behaviour of the
natural rubber during deformation.

2.2. Material
A natural rubber material was used for the stress relaxation test. A few dumbell specimens of
Natural rubber were made according to ASTM specification D6746-15 and the experiment is
conducted at room temperature. The standard gage length of the test specimen was 26 mm as
shown in Figure 1. Tinius Olsen H5KS universal testing machine with 250 N load cell capacity
was used to test the viscoelastic property of the natural rubber.
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75 mm

26 mm

Figure 1: The standard test specimen of the natural rubber

2.3. Relaxation test procedure
Multistep cyclic relaxation tests were designed to investigate the time dependent behaviour of
natural rubber with 50 s of relaxation time at each step. The stretch steps were taken as 150%,
200%, and 250%. The specimen was first stretched up to 150% at strain rate 0.05 s−1 and
hold there for 50 s. Then it was again stretched up to 200%, and was hold there for predefined
period and again stretched up to the final value of 250%. This completes half cycle of loading.
The whole process for unloading cycle repeated immediately at the predefined strain rate and
relaxation time. The same experiment was performed for same stretch value at different strain
rates like 0.07 s−1 and 0.10 s−1 also. The experimental data is reported in the Figure 2.
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Figure 2: Multi step stress relaxation plot (a) Stress Time and (b) Stress Stretch at strain rate
0.05 s−1 (solid curve), 0.07 s−1 (dash curve) and 0.10 s−1 (dash-dot curve) at stretch value =
1.5, 2.0, 2.5 with relaxation time 50 s.

2.4. Experimental observations
Following observations are concluded from the experiment

• During loading the amount of stress relaxation is observed to be more as compare to
unloading cycle. From this observation it may be concluded that at loading the chain
alignment allows the flow of chain inside the network due to decrease in entropy level. This
results decrease in stress level at loading relaxation. While at unloading there is increase in
entropy level and it will hinder the flow of chain inside the network. This results increase
in stress level at unloading relaxation.

• During deformation intermolecular slippage occurs in polymeric network, results reversible
breaking or swapping of different chain bonds. The require timespan to complete this
phenomenon is called the relaxation time.

• Since there is a range of chain lengths in polymeric network that would be continuous
spectrum of relaxation time. The rearrangement of kinks and convolution entirely depends
on the rate of deformation. Hence strain rate is a dominant factor for stress relaxation
phenomenon.
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3. Physics of the chain network deformation
Following the performed experimental observations in the preceding section, the physics of
rubber elasticity related to viscoelastic behaviour of natural rubber is understood through the
mechanism of chain network deformation from microscopic point of view. Figure 3 represents
the schematic diagram of chain assimilation during deformation of the natural rubber. In the
network of chains within the natural rubber, the free chain also participates with dangling chain
and entangled chain during deformation process. The rearrangement of kinks and convolution
of polymeric chain is restricted with relaxation time which depends on the rate of deformation
process.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 3: Schematic diagram showing chain assimilation with deformation (a) Reference network
(b) Deformed chain network (c) Relaxed deformed network

From microscopic point of view, intermolecular slippage occurs during deformation in the
polymeric network due to reversible breaking and swapping of intermolecular bonds. The
polymeric chains get aligned due to applied load which results decrease in entropy level. It
allows the flow of different chains associated in polymeric network. The state up to the maximum
stretch level is reached without breaking of any chain and the reversibility condition prevails;
the material will regain its original configuration upon unloading. Beyond that state, polymeric
chain starts to break and this results increase in entropy level. It provides hindrance to the flow
of the chain inside the polymeric network results the different values of viscous coefficient. The
orientation of different chains in deformed and relaxed configuration of polymeric network may
also be seen in the Figure 3. However, the deformation is resisted by the free chain in polymeric
network as they gain their peak stretch value during deformation process and the free chains
may not attain the same value of stretch level at all.

According to the affine network analogy, the entangled points of molecular chains are assumed
to be connecting points and the number of chains per unit volume and the average number of
kinks in a single chains are unchanged during deformation. But in real deformation process,
the number of entangled points may increase or decrease according to the local deformation of
the polymeric chain by Botto et. al. [20]. Increase in the entangled points reduces the number
of kinks in polymeric chains results increase in the relative stiffening of the materials. On the
other hand, decrease in the entangled points results the opposite effect.

It ensures that there must be inhomogeneity associated during deformation which affect the
viscoelastic properties of polymeric materials. The deformed chain network and the relaxed
deformed network shown in Figures 3(b) and 3(c) may identify such effect. In order to consider
the inhomogeneity during deformation we may consider the Jeffrey rheological model to analyse
the viscoelastic behaviour of polymeric materials under deformation. Figure 3(b) shows the
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deformed state below the maximum possible deformation and this allows to relax the whole
network. The elastic response of the material does not depend on broken chain which relaxes
together with the free chain. The reptile motion of free chains occurs through space provided by
broken chains and results the rate dependent deformation process. The schematic representation
shown in the Figure 3 assures that chain density increases in relaxed deformed network as
compared to the reference network in loading path. Therefore, the time require to regain its
initial configuration in reference path is more compared to the relaxed path. Since there is a
range of chain length in the polymeric network there would be prolonged series of relaxation
time. This relaxation time depends on the rate of deformation because of readjustment of kinks
and convolution is restricted with respect to chain stiffening property.

4. Material modeling
4.1. Deformation mapping
In Figure 4 the reference configuration of the material is Ω0 at time t = 0 and due to finite rate
of deformation the material undergoes the current configuration Ωt at time t = t. If the material
is allowed to relax in the current configuration then it will never regain its original configuration
due to the irreversibility associated within the material. Therefore, a hypothetical intermediate
configuration must exist which lies between initial and current configuration termed as the
relaxed configuration Ωr. This relaxed state may be gained by direct unloading of the material.
Figure 4 also shows the compound mapping of reference configuration to current configuration

Ω0

Ωr

Ωt

F e

F = FeFv

Fv

Reference

Configuration

Relaxed Configuration

Current Configuration

Ωt

Figure 4: Schematic diagram of multiplicative deformation gradient tensor

through the intermediate relaxed configuration by splitting the physical deformation gradient F
in elastic and viscous part as Fe and Fv, respectively. The deformation gradient F is invertible
and its components Fe and Fv are also invertible and related as F= Fe Fv. The incompressibility
constraint in the deformation suggests detF=1, trL = trD = 0 and the decomposed deformation
gradient tensor consists additional incompressibility constraints as

detFe = detFv = 1, (1)

Where L = ḞF−1 is the rate of deformation gradient tensor and its symmetric part represents the
stretch rate tensor D. The intermediate configuration Ωr may suffer due to rigid body rotation
Re. Therefore, through the polar decomposition theorem the viscous stretch tensor DR

v may be
written as

DR
v = ReDvRT

e . (2)
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4.2. Viscoelastic model
We may recognize that the polymeric material comprise from different types of chain network
which are interlinked through each other results viscoelastic effects during its deformation. The
schematic representation of Figure 3 may be mathematically modeled in many possible ways.
The Jeffrey rheological model is introduced to ensure the the instantaneous stress response due
to the proximity to attain high stretch level in faster way with high accuracy. Figure 5 represents
the Jeffrey rheological model that comprise two nonlinear dashpot. These dashpots have the
ability to consider inhomogeneity associated in material deformation. The inhomogeneity arises
due to slipping and breaking of different chains in the polymeric network during its deformation.
Since the model consists two different elements in which a nonlinear dashpot element is in series
with Kelvin-voigt element. Therefore, the stresses in both the elements are equal while the
strains are additive.

ɸ2( 2, Fv)

ɸ1( 1, Fe)

 We(I1e,I2e, J)

P

I1,I2,J

I1,I2,J

2

P

Figure 5: Jeffrey rheological model

In Jeffrey rheological model we may consider that the chain entanglement and the dangling
chain both are the separate network from free chain. The free chains undergo relatively small
stretch compare to other polymeric chain under loading condition. It ensures that different
polymeric chains are interlinked through chemical or physical cross linking in chain network.
The first and second invariant of the left Cauchy-Green deformation tensors B are denoted by I1
and I2. The material parameter J measures the degree of limiting chain extensibility during its
deformation. The material parameter J is an alternative limiting chain extensibility parameter
which may improve the implication of maximum principal stretch limit due to the sigularity at
first invariant value in the simplest Gent model [5]. Horgan et. al. [21] modified the previous
singularity max[λ1, λ2, λ3] < λ∗ with an alternative concept as max[f(λ1), f(λ2), f(λ3)] < J.
Where λ∗ is a constant depends on the deformation being considered and J is an alternative
limiting chain extensibility parameter.

4.3. Constitutive relation
The total energy function for Jeffrey rheological model may be represented as

We = We(I1e, I2e, J). (3)

This energy function also consists second invariant I2 which plays a significant role in
nonhomogeneous deformation and strain stiffening property at high stretch level [22]. The
defined energy function has resemblance with the energy function given by Horgan and
Saccomandi [23]. Therefore, in order to derive constitutive relationship for stress field Horgan
and Saccomandi type energy function is considered. The viscous stretch rate tensor is
decomposed in order to account inhomogeneity effect associated during its deformation properly.
The time derivative of energy function from equation (3) may be obtained as

Ẇe = 2Be
∂We(I1e, I2e, J)

∂Be
: D− 2Be

∂We(I1e, I2e, J)

∂Bv
: Dv. (4)
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We begin our formulation using Clausius-Duhem inequality for thermodynamically consistent
viscoelastic model. The inhomogeneity is considered due to slipping and breaking of different
chain in the polymeric network. In order to account this effect the viscous stretch rate
tensor Dv may be decomposed in Dv1 and Dv2. Further a rate dependent relaxation time
scheme may be incorporated which results reduce in required material parameters and also
the complexity level associated in calibration of relaxation time. The thermodynamically
consistent constitutive relation for viscoelastic material may be derived through Clausius-Duhem
inequality. Introducing the Clausius-Duhem inequality, the mechanical dissipation associated in
the deformation process may be expressed as

Γ− Ẇe ≥ 0, (5)

where Γ represents stress power density and We is energy absorption capacity of material during
its deformation. With the assumption that material properties are invariant due to change in
temperature [22] during deformation, we may rewrite the following inequality as

S− 2Be
∂We(I1e, I2e, J)

∂Be
: D− 2Be

∂We(I1e, I2e, J)

∂Bv
: (Dv1 + Dv2) ≥ 0. (6)

From the first part of inequality (6) the Cauchy stress tensor S for incompressible, isotropic
hyperelastic material may be obtained as

S = −pI + 2Be
∂We(I1e, I2e, J)

∂I1e
+ 2Be(I1e −Be)

∂We(I1e, I2e, J)

∂I2e
. (7)

The second invariant and an alternative limiting chain extensibility parameter are additionally
included in the Horgan and Saccomandi type energy function [23] which makes it more versatile
in finite deformation. The expression of the energy function is given as

We(I1e, I2e, J) = −µ
2

(J − 1)2

J
ln

(
J3 − J2I1e + JI2e − 1

(J − 1)3

)
. (8)

Introducing this energy function in equation (7), the Cauchy stress tensor in Jeffrey rheological
model may be obtained as

S = −pI + µ

(
1− 1

J

)2(
1− λ1e

2

J

)(
1− λ2e

2

J

)(
1− λ3e

2

J

)(Be +
B−1

e

J

)
, (9)

where p is the arbitrary hydrostatic pressure associated due to incompressibility constraint and
µ is the material constant during deformation.

In order to derive the evolution equation for viscoelastic material, there must be existence
of a dissipation pseudo potential function postulated by Boukamel et. al. [24]. This dissipative
potential function Φ describes the thermodynamics of irreversibility associated due to growth of
entropy rate that may be written as

Φ =
η

2

(
DR

v : DR
v

)
, (10)

where η is a viscosity coefficient, hence derivative of potential function is given as

∂Φ

∂Dv1
= η1Dv1 and

∂Φ

∂Dv2
= η2Dv2. (11)
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Introducing equation (11) into the second part of inequality (6) leads to balance the rate of
dissipative forces as

Dv1 =
2

η1

(
Be

∂We

∂Bv
− qI

)
(12)

similarly;

Dv2 =
2

η2

(
Be

∂We

∂Bv
− qI

)
, (13)

where q is the arbitrary hydrostatic pressure associated due to dissipative stretch rate tensor.
The generalized evolution equation of viscoelastic material from Jeffrey rheological model may
be obtain as

Ḃe = 2BeD− 4Be

(
1

η1
+

1

η2

)[
Be
∂We

∂Be
− (S− uI)

]
. (14)

The above evolution equation consists of two different viscous coefficients η1 and η2 respectively.
These coefficients ensure the degree of inhomogeneity associated during deformation as there
is slippage and breakage of chain in polymeric network. Where u is indeterminate hydrostatic
pressure arising from the incompressibility constraint associated with Cauchy stress.

5. Experimental validation and model comparison
The generalized stress response relationship for the natural rubber is obtained from equation
(7) along with the stretch response function from the evolution equation (14). The author’s
multistep relaxation tests for uniaxial loading are shown in Figure 2. The validation of
proposed mathematical model with the experimental test data may be predicted by physical
time dependent uniaxial stretch in principal coordinate as λ1 = λ(t) and λ2 = λ3 = 1√

λ(t)
. The

internal state variables λe and λv denote the elastic and viscous stretch, respectively. They are
related as λ(t) = λe(t)λv(t). These variables satisfy the incompressibility constraint illustrated
in equation (1). The engineering stress response for Horgan and Saccomandi type material may
be obtained from the equation (7) for uniaxial loading condition as

P11 = µ

(
1− 1

J

)2(λ2e
λ
− 1

λλe

)
(

1− λ2e
J

)
(1− 1

Jλe
)
. (15)

Expanding all the elements of equation(14) we may get

Ḃe11 = 2Be11
λ̇

λ
− 4

(
1

η1
+

1

η2

)
Be11

 µ
2

(
1− 1

J

)2(
1− λ2e

J

)(
1− 1

Jλe

)2Be11 − (S11 − u)

 (16)

and

Ḃe22 = −Be22
λ̇

λ
− 4

(
1

η1
+

1

η2

)
Be22

 µ
2

(
1− 1

J

)2(
1− λ2e

J

)(
1− 1

Jλe

)2Be22 − (S22 − u)

. (17)

Now, applying the incompressibility constraint Be11Be22Be33 = 1 from the equations (16) and
(17) the evolution equation of stretch rate may be obtained as

λ̇e =
λ̇

λ
λe −

2µ

3

(
1

η1
+

1

η2

)
(
1− 1

J

)2 [
1 + 1

J

(
1− 2

λe

)]
(

1− λ2e
J

)(
1− 1

Jλe

)2 (
λ3e − 1

). (18)
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The above equation represents the generalized rate dependent stretch response of the natural
rubber. The viscoelastic stretch response is derived to analyse the time dependent behaviour
of natural rubber during its deformation under loading condition. Laiarinandrasana et al. [12]
used a polynomial type Rivilin energy function for elastic and viscous network separately:

We = C10e(I1e − 3) + C01e(I2e − 3) + C20e(I2e − 3)2,

Wv = C10v(I1v − 3) + C01v(I2v − 3),
(19)

where C10e, C01e and C20e are positive material parameters for elastic network and C10v, C01v

for viscous network.
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Figure 6: Multistep stress relaxation test data at strain rate 0.05 s−1 (star dots) (a) Stress
Time and (b) Stress Stretch plot compared with proposed rheological model (solid line) and
Laiarinandrasana et. al. model (dotted line)

The proposed mathematical model for the natural rubber is presented by equation (9)
together with the evolution equation (14) consists only four material parameters for uniaxial
deformation presented in the equations (15) and (18). Experiment was carried out from zero
stress level to peak stress for multistep stress relaxation test and the evolution criteria is governed
by the relation (14). The state variable λe may be obtained through numerical integration of
rate dependent evolution equation (19). The plot of multistep relaxation test for strain rate 0.05
s−1 is shown in Figure 6 by star dots. The model parameters appear in Laiarinandrasana et
al. and proposed mathematical model may be obtained easily using the least squares regression
method by fitting the author’s multistep relaxation test data is presented in Table 1.

Table 1: Material parameters obtained from the constitutive models

Proposed model η1 = 39.23 MPas η2 = 43.65 MPas µ = 6.41 MPa
J = 21.37

Laiarinandrasana et al. C10e = 2.81 MPa C01e = 0.73 MPa C20e = 0.47 MPa
C10v = 2.76 MPa C01v = 1.03 MPa η = 59 MPas

The stress-time and stress-stretch plots shows the comparison between the proposed
rheological model (solid line) and Laiarinandrasana et. al. model (dotted line) in Figure 6. The
comparison of the proposed mathematical model shows a good agreement with the experimental
test data and Laiarinandrasana et al. model. An interesting merit of the proposed mathematical
model lies in the fact that it may provide the physical parameters values with no complexity.
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The experiments have performed at three different strain rates like 0.05 s−1, 0.07 s−1 and 0.1
s−1 respectively. The comparison of proposed model with experimental data has been done at
strain rate 0.05 s−1 to identify the time dependent behaviour of viscoelastic materials. The other
strain rate may also be used for the model comparison then accordingly value of the material
parameters will vary. Moreover, the simple and clear mathematical formulation allows us to
understand how it is possible to generalize constitutive model considering a chain stiffening
parameter J beyond classical model reported by other researchers which are quite complex.

6. Concluding remarks
A generalized viscoelastic model is presented to predict the viscoelastic behaviour of natural
rubber with reduced complexity. The success of the derived evolution equation (14) characterises
the viscoelastic effect with reduced material parameters and complexity level. Moreover, the
proposed model requires only four material parameters for their evolution with experimental
data. The shear modulus µ signifies about rigidity of material depends on the cross linking
of chains, chain realignment and chain entanglements. The other parameter η1 and η2 are
strains rate coefficients measure the degree of flow in the chains to its initial undeformed state
and J represents the limiting chain extensibility parameter of material. In contrast, other
viscoelastic models require more material parameters for their evolution with experimental
data and also demands more computational time. Finally, our simple four parameter evolution
equation and the stress response with second invariant I2 focuses on the physically relevant
model development and experimental validation with relaxation test data. The results obtained
are in good agreement with experimental data and with Laiarinandrasana et. al. model as well.
The material model including damage effect will be presented in our future work.
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