Comparative study of SVPWM (space vector pulse width modulation) & SPWM (sinusoidal pulse width modulation) based three phase voltage source inverters for variable speed drive

To cite this article: Waheed Ahmed and Syed M Usman Ali 2013 IOP Conf. Ser.: Mater. Sci. Eng. 51 012027

View the article online for updates and enhancements.

Related content
- Three phase six-switch PWM buck rectifier with power factor improvement
 M Zafarullah Khan, M Mohsin Naveed and D M Akbar Hussain
- Comparison of performance between bipolar and unipolar double-frequency sinusoidal pulse width modulation in a digitally controlled H-bridge inverter system
 Lei Bo, Xiao Guo-Chun and Wu Xuan-Lü
- Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation
 Mansoor Khan, Wang Yong and Ehtasham Mustafa

Recent citations
- Self-oscillating inverter with bipolar transistors
 I Baciu et al
Comparative study of SVPWM (space vector pulse width modulation) & SPWM (sinusoidal pulse width modulation) based three phase voltage source inverters for variable speed drive

Waheed Ahmed1,2 and Syed M Usman Ali1
1 Department of Electronic Engineering, NED University of Engineering & Technology, University Road, Karachi -75270, Pakistan.

Engineering_waheed@hotmail.com

Abstract. We have performed comparative studies of Space Vector Pulse Width Modulation (SVPWM) and Sinusoidal Pulse Width Modulation (SPWM) techniques utilizing MATLAB tools. During these investigations, we carried out intensive simulations, comprehensively analyzed the obtained results and compared the harmonic density, power factor (PF), & switching losses of SVPWM and SPWM. It has been observed during investigations that if the switching frequency is high then losses due to harmonics are negligible, thus based on obtained results we suggested that the SVPWM technique is a more reliable solution. Because SVPWM utilizes DC bus voltage more efficiently, generates less Total Harmonic Distortion (THD) and has higher output quality it provides flexible control of output voltage and output frequency for Variable Speed Drive (VSD).

Index Terms: Space Vector Pulse Width Modulation (SVPWM), Sinusoidal Pulse Width Modulation (SPWM), MATLAB, Total Harmonic Distortion (THD), Power Factor (PF), and Variable Speed Drive (VSD) Voltage Source Inverter (VSI).

1. Introduction
Indeed, with the advent of advancement in manufacturing & designing, AC drives superceded the DC drives due to their higher performance and better efficiency. The most important advantages of AC drives over DC drives are faster predictable dynamic response, constant and better Power Factor (PF) and 100% continuous torque at zero speed (Applicable to flux vector control technology). AC motors have low cost, less complicated, rugged and easy to maintain or replace, therefore this is also a major cause of shifting of technology from DC drives to AC drives.

For optimum performance, we select the best possible switching and control technique for AC drives. The control techniques used in Variable Speed Drives (VSD) are scalar control (Volts per Hertz Control), vector control (Direct torque control and Field-oriented control) where as the switching techniques used in Variable Speed Drive (VSD) are six step switching technique, selected-harmonic-elimination pulse width modulation (SHPWM), delta pulse width modulation (DPWM), delta-sigma pulse width modulation (DSPWM), minimum-ripple current pulse width modulation and sinusoidal pulse width modulation (SPWM) etc.
The Sinusoidal Pulse Width Modulation and Space Vector Pulse Width Modulation are most widely used modulation techniques due to their greater advantages. The SVPWM technique gives higher level of fundamental voltage as compared to SPWM [1]. The comparison of these two modulation gives the results that SVPWM is the best and most reliable modulation because it enables efficient use of DC voltages and smartly works with vector control thus, gives less Total Harmonic Distortion (THD), better PF, and less switching losses at high frequencies.

2. Voltage source inverters
Voltage Source Inverters (VSI) have proven to be more efficient, cost effective, less space, faster dynamic response for rapid changes in speed or torque and be capable of running the motor without de-rating.

A typical three phase VSI consist of a diode rectifier (SCR bridge rectifiers in case of variable DC output voltages) which converts AC line to DC, a parallel capacitor DC Link which stores the energy for the system and regulates the DC bus voltages, an inverter is consist of insulated gate bipolar transistors (IGBTs) which provides variable frequency output depending upon the applied reference voltage and switching technique. A typical VSI is shown in figure 1.

![Figure 1. Three phase voltage source inverter](image)

3. Simulink model for SPWM and SVPWM modulation technique

![Figure 2. Simulink model for SPWM and SVPWM](image)
4. Sinusoidal pulse width modulation

For the generation of pure sinusoidal signal, SPWM is the most popular technique. In SPWM a digital waveform is generated and the duty cycle is modulated such that the average voltage of the waveform is corresponds to a pure sine wave. SPWM moves the voltage harmonic components to the higher frequencies. The SPWM technique treats each modulating voltage as a separate signal and compared to the common carrier triangular waveform.

The working principle of SPWM includes the following points:

- The frequency of triangular wave is the frequency of PWM.
- Frequency of control voltage controls the fundamental frequency.
- The peak value of control voltage controls the amplitude.
- Modulation Index is defined by:
 \[m = \frac{\text{Peak of } V_{\text{dc}}}{V_{\text{dc}}} = \frac{V_{\text{control}}}{V_{\text{triangle}}} \]
 Where \(V_{\text{ao}} \) = Fundamental component of \(V_{\text{dc}} \).

 - For Phase A:
 - If \(V_{\text{control}} > V_{\text{triangle}} \) then \(V_{\text{ao}} = V_{\text{dc}}/2 \).
 - If \(V_{\text{control}} < V_{\text{triangle}} \) then \(V_{\text{ao}} = -V_{\text{dc}}/2 \).
 - For Phase B:
 - If \(V_{\text{control}} > V_{\text{triangle}} \) then \(V_{\text{bo}} = V_{\text{dc}}/2 \).
 - If \(V_{\text{control}} < V_{\text{triangle}} \) then \(V_{\text{bo}} = -V_{\text{dc}}/2 \).
 - For Phase C:
 - If \(V_{\text{control}} > V_{\text{triangle}} \) then \(V_{\text{co}} = V_{\text{dc}}/2 \).
 - If \(V_{\text{control}} < V_{\text{triangle}} \) then \(V_{\text{co}} = -V_{\text{dc}}/2 \).

5. Simulation of three phase SPWM based inverter

We analyzed the output line current \(I_c \) in MATLAB Simulink and found following readings for THD & Power Factor in table 1:

<table>
<thead>
<tr>
<th>Table 1. Modulation index and corresponding total harmonic distortion with overall power factor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation index</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>0.9</td>
</tr>
</tbody>
</table>

The ratio of the real power to the apparent power is defined by PF. The lesser the phase shift between the fundamental voltage and current, the greater the PF. It should be noted that PF is not directly related to the THD because in THD calculation, phase shift between current and voltage inputs are not factored. However (PF / CosΦ) term can be related to the THD which shows if THD increased then the factor (PF / CosΦ) is decreased. Therefore the readings of power factor in table 1 are measured through scope in MATLAB Simulink instead of calculation by THD and PF formulas. THD is actually the RMS distortion of all AC components excluding fundamental component, THD is expressed as a percentage of the RMS value of the fundamental component. It means THD shows the amount of deviation of the output signal from fundamental signal. Formulas of THD and PF are given in equation (1) and equation (2) respectively.
THD = \(\left(A_{\text{rms}} - A_1 \right)^{1/2} / A_1 \) \hspace{1cm} (1)

Where \(A_1 \) = RMS Value of Fundamental signal.
\(A_{\text{rms}} \) = Total RMS Value of the complete signal.

\[PF = \cos \Phi_1 / (1 + \text{THD}^2)^{1/2} \] \hspace{1cm} (2)

Where \(\Phi_1 \) = Phase Shift between Fundamental Voltage and Current.

For the simulation, we selected the following parameters to observe the comparison between SPWM and SVPWM techniques:

- \(V_{\text{dc}} = 600\text{V} \)
- Carrier Signal Frequency = 3K Hz
- Fundamental Frequency = 50 Hz
- Modulation Index = 0.1 to 1

Figure 3. Simulation results of the SPWM
Figure 3 shows the graphical analysis of the reference signal, carrier signal, gate signals for switch S_1 to S_6, output line voltages V_{ab}, V_{ac}, V_{bc}, output line currents I_a, I_c, and I_b respectively. THD of output line voltage V_{ac}, magnitude (Fourier analysis of output line voltage V_{ac}), angle (Fourier analysis of output line voltage V_{ac}), THD of output line current I_c, magnitude (Fourier analysis of output line current I_c), and angle (Fourier analysis of output line current I_c) simultaneously.

Graphical representation of modulation index and THD in SPWM is shown in figure 4 which represents that THD decreases as modulation index increases.

![Figure 4. Modulation index vs THD in SPWM](image)

6. Space vector pulse width modulation

SVPWM is the best computational PWM technique for a three phase voltage source inverter because of it provides less THD & better PF. SVPWM works on the principle that when upper transistor is switched ON; corresponding lower transistor is switched OFF. The ON and OFF state of the upper switches (S_1, S_3, S_5) evaluates the output voltages. Switching states and corresponding phase and line voltages are shown in table 2.

<table>
<thead>
<tr>
<th>Switching States</th>
<th>Phase Voltages</th>
<th>Line Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b c</td>
<td>V_a V_b V_c</td>
<td>V_{ab} V_{bc} V_{ca}</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>2/3 -1/3 -1/3</td>
<td>1 0 -1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>1/3 1/3 -2/3</td>
<td>0 1 -1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>-1/3 2/3 -1/3</td>
<td>-1 1 0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>-2/3 1/3 1/3</td>
<td>-1 0 1</td>
</tr>
<tr>
<td>0 0 1</td>
<td>-1/3 -1/3 2/3</td>
<td>0 -1 1</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1/3 -2/3 1/3</td>
<td>1 -1 0</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>
For the sector determination, we developed a flow chart showing the different conditions for different sectors. Six sectors and their conditions are shown in figure 5. SVPWM provides approximately 10-20% increment in maximum voltage. The SVPWM can be implemented with the following steps [3] [4]:

- Determination of \(V_d \), \(V_q \), \(V_{ref} \) and angle (\(\alpha \)).
- Time duration \(T_1 \), \(T_2 \), \(T_0 \) Determination.
- Determination of the switching time of each transistor (\(S_1 \) to \(S_6 \)).

![Flow Chart of Sector Determination](image)

Figure 5. Flow Chart of Sector Determination

7. Simulation of three phase SVPWM based inverter

In SVPWM the overall power factor & THD has improved as compared to SPWM. Analysis of the output line current \(I_c \) in MATLAB Simulink for THD & Power Factor is shown in table 3. It should be noted that power factor reading is overall power factor of the system analyzed by power factor analyzer.

<table>
<thead>
<tr>
<th>Modulation index</th>
<th>THD for current (%)</th>
<th>Overall PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>129.62</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>40.71</td>
<td>0.871</td>
</tr>
<tr>
<td>0.9</td>
<td>3.42</td>
<td></td>
</tr>
</tbody>
</table>
In the simulation of SVPWM, we selected the following parameters to observe the comparison between SPWM and SVPWM techniques:

\[V_{dc} = 600V \]

Carrier Signal Frequency = 3K Hz

Fundamental Frequency = 50 Hz

Modulation Index = 0.1 to 1

Figure 6 is showing the graphical results of three phase output line voltages \(V_{ab}, V_{bc}, V_{ac} \), transformed two phase voltages, control signals of SVPWM, THD of output line voltage \(V_{ac} \), magnitude (Fourier analysis of output line voltage \(V_{ac} \)), angle (Fourier analysis of output line voltage \(V_{ac} \)), THD of output line current \(I_c \), magnitude (Fourier analysis of output line current \(I_c \)), and angle (Fourier analysis of output line current \(I_c \)) simultaneously. SVPWM has good drive response if we have variable speed reference or load torque [2]. Graphical representation of modulation index & THD in SVPWM are also shown in figure 6.

Figure 6. Simulation results of the SVPWM.

8. Switching losses in SPWM and SVPWM

For low power applications, switching losses are acceptable for specific range but for high power applications, switching losses become more significant. Because of switching losses, high frequencies
(greater than 20 kHz) are less efficient than lower frequencies (as low as 100 Hz) due to efficiency of system reduces as switching losses increased, since for reducing filtering requirements we have to increase switching frequency which results in greater switching losses. Although switching losses can be reduced by modifying carrier signal in SPWM or using zero switching technique or shifting to multilevel inverters [5] but on the other hand it results in greater harmonic distortion or poor power factor.

SVPMW has greater flexibility to reduce switching losses. In SVPWM reduced switching losses are because of the changing of any one switching state which results in one single phase voltage change every time. If system needs further reduction in switching losses than another technique could be used for switching loss reduction based on stopping the control pulses of SVPWM for some duration and this duration depends upon angle of the load power factor. For different modulation indexes, extra switching can be eliminated in SVPWM.

9. Conclusion
In this paper, SPWM and SVPWM techniques have been investigated and compared. During the investigations, we realized harmonic density, power factor & switching losses in both techniques. For this purpose we also performed extensive simulations of these techniques using MATLAB tools. It has been observed that SVPWM has showed superior performances due to less THD, greater PF and less switching losses because SVPWM utilizes advance computational switching technique to reduce THD. It also reduces switching losses because of the changing of any one switching state which results in one single phase voltage change every time. Furthermore, at high switching frequencies SVPWM gives better results as compared to SPWM. Thus, based on all obtained results, we concluded that SVPWM technique provides greater overall performance and efficiency as compared to SPWM technique.

References