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Abstract. In this study, finite element analysis (FEA) of composite overwrapped pressure 

vessel (COPV), using commercial software ABAQUS 6.12 was performed. The study deals 

with the simulation of aluminum pressure vessel overwrapping by Carbon/Epoxy fiber 

reinforced polymer (CFRP). Finite element method (FEM) was utilized to investigate the 
effects of winding angle on filament-wound pressure vessel. Burst pressure, maximum shell 

displacement and the optimum winding angle of the composite vessel under pure internal 

pressure were determined. The Laminae were oriented asymmetrically for [00,00]s ,[150,-150]s

,[300,-300]s ,[450,-450]s ,[550,-550]s, [600,-600]s ,[750,-750]s,[900,-900]s orientations. An exact

elastic solution along with the Tsai-Wu, Tsai-Hill and maximum stress failure criteria were 

employed for analyzing data. Investigations exposed that the optimum winding angle happens 

at 550 winding angle. Results were compared with the experimental ones and there was a good 

agreement between them.  

1. Introduction

The wide range of pressure vessel applications turned it into one of the most important equipment of 
industry. Today composite pressure vessels known as new generation vessels have been widely used 

in many industrial zones. The superior characteristics of a composite vessel such as light weight, high 

stiffness, corrosion resistance and long lifetime make it a perfect replacement for metallic vessels [1-
2]. Although composite vessels were first used for military cases and aerospace functions, nowadays 

they have many civilian applications including oxygen and hydrogen gas storage cylinders, scuba and 

fire-fighter tanks [3-7].    
Filament winding is the usual considered process for fabricating composite structures. It is the 

process in which continuous filaments of fiber are wound on a supporting mandrel. The mandrel 

rotates with the spinning wheel on a horizontal axis then carriage begins to move linearly so fibers are 

laid down in the predetermined path. The most conventional uses of filament winding process are in 
high-pressure storage tanks, rocket motor cases, launch tubes, and for commercial applications, such 

as golf club shafts [8]. 

A thin-walled (the ratio of outside to the inside diameter of the vessel less than 1.1) composite 
vessel has been studied in this present work. The composite vessel is made of inside aluminum liner 

2nd International Conference on Mechanical Engineering Research (ICMER 2013) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 50 (2013) 012061 doi:10.1088/1757-899X/50/1/012061

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:suddin@eng.upm.edu.mya


overwrapping with Carbon fiber/Epoxy composite. This type of vessel is placed in the third type of 

composite vessel usually used has higher corrosion resistance, more safety and longer lifetime [9].   

Barboza Neto et al. [10] investigated the behaviour of LLDPE and HDPE composite pressure 

vessel under burst testing. The experimental and finite element analyses were applied to determine the 
proper composite thickness based on the value of burst pressure. Studies estimated the required vessel 

thickness and proper stacking sequences according to the burst pressure. Liu et al. [11] focused on 

predicting the burst pressure and lifetime of composite pressure vessels. Damage modeling and 
progressive failure analysis were utilized to determine the strength reliability, stiffness degradation 

and failure properties of composite vessel. Sayman et al. [12] did the experimental study at GRP 

composite cylinders to survey the effects of temperature and winding angle on strength of composite 

vessels. Studies demonstrated the optimum stacking sequence and also proved that the strength of 
composite vessels decreases with increasing temperature. Gohari et al. [13] compared finite element 

analysis with theoretical studies to ascertain that static internal pressure and fiber angle orientation 

have the direct effect on stress distribution of composite vessel. Tabakov and Summers [14] 
introduced a 3-D elasticity solution to study the behaviour of multi-layered cylinder subjected to 

asymmetric internal and external pressure along with the axial force. The analyses demonstrated that 

for thin-wall and thick-wall single-layered cylinders the optimum winding angle is in the range of 54
0
-

57
0
. Xu et al. [15] utilized finite element analysis to predict burst pressure of the composite storage 

vessel. Tsai-Wu failure theory was applied to predict the damage evolution and failure strength in 

composite vessel subjected under internal pressure. Bhavya et al. [16] investigated the effects of 

diameter-to-thickness ratio and surveyed the variation of failure pressure with respect to fiber angle 
using finite element software. Marzbanrad et al. [17] employed “unit load method” to predict the burst 

pressure and fatigue lifetime of composite vessel. The simulation results obtained from ABAQUS 

were in good agreement with the experimental ones. In this present research attempts have been made 
to: 

 Determine the burst pressure and the maximum shell displacement for asymmetric fiber

orientations of composite vessel.

 Determine optimum winding angle according to diverse failure criteria.

 Compare simulation results with the experimental ones.

2. Theoretical Studies

2.1. Winding Angle 

Winding angle has significant effects on the structure of filament-wound vessels; so determining the 
appropriate angle for each part of the vessel is an important issue. The winding angle is defined for the 

two types of geodesic and non-geodesic winding based on the need for friction between fibers and the 

shell as in Eq. (1). The second part of the following relation relates to the non-geodesic winding 
method [11, 18-21]: 

 (R)=      
  

 
   ̅ δ (

    

      
)
 

 (1) 

Here, R is the radial distance from the center line to a point in the layer,    is the radius of the 

polar axis, and     is the radius at the dome-cylinder tangent line. A geodesic winding pattern, as in 

this research is obtained by choosing δ= 0. 

2.2. Optimum Winding Angle 

Netting analysis is one of the most popular analytical techniques used for investigating the behavior of 

multi-layered composite materials, especially for filament-wound pressure vessels. The main 

assumption in netting analysis is that all loads are carried by the fibers neglecting the stiffness of the 
matrix and internal pressure subjected to the vessel produces a hoop-to-axial-stress ratio of 2:1 [22]. 
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Figure 1 indicates the thin-wall cylindrical vessel with the thickness of “t” and length of “L” which is 

subjected into the internal pressure of “P”. In order to calculate the axial (longitudinal) and hoop 

stresses at the cylinder with the radius of “R”, Eq. (2) can be utilized [23-25]: 

   = 
  

 
 ,     = PR  (2) 

Axial and hoop stresses can be calculated as in Eq. (3): 

                                                     = 
  

 
 

  

  
 ,       = 

  

 
 = 

  

 
 (3) 

Axial and hoop stresses can be calculated according to equilibrium across the cut section too as in Eqs. 

(4) and (5):  

 PL (2R) =2     Lt        = 
  

 
 (4) 

 Pπr
2 
=       (2πRt)       = 

  

  
 (5) 

Figure 1. Thin cylindrical shell [23]. 

 Optimum winding angle can be estimated by using ultimate tensile strength along with applying 

netting analysis respect to 2:1 hoop-to-axial stress ratio as it is shown at Eqs. (6) and (7)., as it is 
shown in figure 2. The body diagram of the cylinder consists of axial and hoop forces wrapped with 

the fibers at the angle of “α” is indicated at figure 2. 

Nθ =   t sin
2
α    , NØ =   t cos

2
α  (6) 

  

  
 = tan

2
 α = 2  α = arc tan (√  ) = 54.7

0
 (7) 
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Figure 2. Body diagram of axial and hoop forces and internal pressure [26]. 

2.3. Failure Theories 

Precise analyzing the strength of composite layers requires employing failure criteria. Different types 

of failure analyses can be used for evaluating the strength of composites laminae. 

2.3.1. Tsai-wu failure criterion 

Satisfying the Eq. (8) is essential for Tsai-Wu theory to predict failure in an orthotropic lamina under 

plane stress condition [27]: 

     
 +      

  +       
  +      +      + 2         1  (8) 

Elastic characteristics consist of four independent elastic constants (   ,   ,   ,     . Strength 

properties are divided into five independent strength properties: 

   = longitudinal tensile strength,    = transverse tensile strength 

   = longitudinal compressive strength,    = transverse compressive strength 

S = in-plane shear strength 

  ,    are the strength coefficients and are given by, it should be considered that   ,   ,           , 

         can be calculated by using the tensile, compressive and shear strength properties in the 

principal material directions at the Eq. (9): 
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2.3.2. Tsai-hill failure criterion 

Tsai-Hill failure criterion can be explained at Eq. (10) [28]: 

       
 +      

  +       
  + 2         1  (10) 

The strength parameters    ,     ,     and      are given by at Eq. (11): 
     

          =  
 

       ,            = 
 

   ,     
 

   ,           =  
 

 
 ( 
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   )  (11) 

2.3.3. Maximum stress failure criterion 

This theory, Eq. (12), expresses that the failure occurrences when at least one of the following criteria 
is satisfied [15]: 

2nd International Conference on Mechanical Engineering Research (ICMER 2013) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 50 (2013) 012061 doi:10.1088/1757-899X/50/1/012061

4



 |
  

 
|    , |

  

 
|   , |

   

 
|     (12) 

3. Simulation Details

The considered pressure vessel is the vertical one designed for low capacity applications. The vessel is 

sketched with 1200 mm length, 300 mm diameter at the center point and the wall thickness of (0.3-4) 
mm based on the geometry .The material of this cylindrical vessel consist of the aluminum alloy inside 

layer reinforced with six layers of Carbon/Epoxy T300/LY5052 fiber. The wall thickness of vessel in 

center section of the vessel is 0.3 mm and each lamina thickness is 0.762. The inner radius of the 
vessel is 150 mm, considering six composite layers (4.572 mm); the outer radius of the vessel becomes 

154.872 mm. Tables 1 and 2 indicate material properties of aluminum alloy [29] and CFRP [3] 

respectively.   

Table 1. Mechanical properties of Al 6061 and CFRP. 

Density(kg/m
3
) E1 (GPa) E2 (GPa) υ12 G12 (GPa) τ (MPa) 

AL 6061 2750
* 

70 70 0.3 27 600 
CFRP 1570

* 
135 8 0.27 3.8 - 

*.Yingjun et al., 2010 

Table 2. Strength parameters for CFRP composite. 

In this research finite element analysis software has been used to collect the proper data. In order to 

analyze the effects of variables on filament wound structures “ABAQUS” software is utilized for 

modeling the vessel. In order to reduce the time of calculation, the finite element model has been made 
for half the composite pressure vessel as it is indicated at the figure 3.The mesh is constant for the 

whole part and because the model has been made due to the revolving process, the “Quad-dominated” 

meshing type has been selected. For obtaining precise results meshing with global size of 0.01 has 
been used. This mesh consists of 4290 nodes and 7872 elements.  

Figure 3. The finite element model of composite vessel. 

Internal pressure load has been applied for subjecting to model to estimate the burst pressure and 
maximum shell displacement in two cases; first non-constant pressure to find the burst pressure and 

second constant pressure to find the shell displacement. In order to consider the effects of winding 

angle, the data should be evaluated based on failure theories. According to what was mentioned before 

Tsai-Wu, Tsai-Hill and maximum stress failure theories have been utilized for analysing data. In 
composite pressure vessels the burst pressure is determined by investigating the first-ply failure 

Xt (MPa) Xc (MPa) Yt (MPa) Yc (MPa) S (MPa) 

1860 1470 76 85 98 
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strength. Although the ultimate burst strength is usually higher than the first-ply failure strength, 

determining the first-ply failure of composite layer is safe enough to design the vessel [30].  

 According to the mentioned failure theories the method for obtaining the outputs are different. In 

order to analyse the model based on Tsai-Wu and Tsai-Hill failure criteria, after defining the Winding 
Angle it is essential to select the appropriate amount of internal pressure. This means that the quantity 

of internal pressure should be set to reach the proper failure coefficient (slightly higher than one) and 

then the outputs can be calculated. Subsequently the internal pressure can be submitted as burst 
pressure which is one of the main outputs of research. Maximum stress failure theory follows the 

philosophy that the maximum stress of composite first-ply should be always less than the ultimate 

stress (          [3,31]. 

 In this present work, asymmetric fiber orientation,[θ /- θ / θ /- θ / θ /- θ], has been presented for 
[0

0
,0

0
]s ,[15

0
,-15

0
]s ,[30

0
,-30

0
]s ,[45

0
,-45

0
]s ,[55

0
,-55

0
]s, [60

0
,-60

0
]s ,[75

0
,-75

0
]s,[90

0
,-90

0
]s. Figure 4

shows the stacking sequences for 55
0
 winding angle: 

Figure 4. The stacking sequences for 55
0
 winding angle. 

4. Results And Discussion

The following results are extracted from analysing aluminum alloy which is strengthened by six layers 

of Carbon/Epoxy fiber with constant thickness of 0.762 mm for each layer. Figure 5 shows that in 

asymmetric fiber orientation the graph is not following a steady manner. According to failure criteria, 
the burst pressure displays increasing trend for 0

0
 to 55

0
 angle degrees, after 55

0
 angle degrees the 

graph follows the decreasing trend up to reach 90
0
 angle degrees. As it is clear at figure 5, the 

maximum burst pressure which vessel can withstand happens in 55
0
 degrees (The optimum winding 

angle) based on failure theories. The maximum burst pressures have  been obtained 15.5 MPa, 15.6 

MPa and 16 MPa for Tsai-Wu, Tsai-Hill and maximum stress theories respectively. This angle has a 

good agreement with the winding angle calculated with netting analysis for composite laminates (54.7
0
 

degrees) [22].  
Internal pressure is a combined load which produces axial and hoop stresses in materials. In order 

to find the optimum angle which withstands the maximum burst pressure, it is essential to search for 

the fiber angle which can tolerate hoop and axial stresses under the internal pressure. The burst 
pressure increases with increasing winding angle up to 55

0
 degrees because laminates show more 

resistance to hoop stress than the axial stress. As the curve reaches to its maximum in 55
0
 degrees, the 

amount of burst pressure decreases due to fiber higher resistance to axial stress and its lower resistance 
to hoop stress [32].  
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Figure 5. Variation of burst pressure with increasing winding angle. 

As it is obvious at figure 5 Tsai-Wu and Tsai-Hill failure theories present more conservative results 
than maximum stress failure criteria but the difference can be negligible. Figure 6 exposes the 

maximum normal stress and the maximum stress failure failure coefficient for the 55
0
 fiber angle 

orientation. The results based on failure theories are in good correlation with the experimental ones 

[4,12, 32]. 

Figure 6. The maximum stress and failure coefficient at 55
0
 winding angle. 

At the second case with applying the constant pressure in model, the 15 MPa internal pressure has 

been subjected in vessel. As it is shown at figure 7 the minimum shell displacement belongs to 55
0
 

winding angle which proves the claim that 55
0
 is the optimum angle and this is in good correlation 

with the experimental results [34-35].The FE model for the vessel shell displacement at 55
0
 is 

presented at figure 8. 
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Figure 7. Variation of shell displacement with increasing winding angle 

Figure 8. The shell displacement at 55
0
 angle. 

5. Conclusion

In this work, Finite element analysis was employed for investigating the structural behavior of 

pressure vessels. Aluminum alloy was utilized as the inside layer covered with Carbon/Epoxy fiber 

which was roving at different winding angles. FEA employed failure criteria such as Tsai-Wu, Tsai-
Hill and maximum stress to predict the burst pressure, maximum shell displacement and determine the 

optimum winding angle. 

Results and discussions were resulted in the following findings: 

 Based on Tsai-Wu and Tsai-Hill failure criteria, 55
0
 winding angle was approved as the

optimum winding angle due to its maximum burst pressure and minimum shell displacement.

This optimum angle was in good correlation with the experimental results trend and the

netting analysis (54.7
0
).

 Determining burst pressure using maximum stress failure theory was lead to less conservative

results and higher burst pressure due to estimating the burst pressure based on ultimate

strength of Carbon/Epoxy fiber.
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