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Abstract. The paper reports an attempt at assessing the effect of geodesic dome mesh 
refinement on the structure critical load capacity. The initial surface of geodesic domes is the 
sphere divided into spherical triangles. Consecutive divisions of the spherical triangles decide 
the mesh refinement of the geodesic domes. Two computational models (3V and 4V) were 
examined. For 4V dome, two types of structure, namely truss and frame ones were considered. 
For 4V frame system, the values of the critical load capacity were determined for three 
buckling lengths of the bars μ: 0.5, 0.7 and 1.0. 

1.  Introduction 
Lattice domes are cyclically symmetric structures. They contain many struts of the same geometry; 
consequently, they are convenient from the standpoint of modern fabrication organisation and 
assembly. Popularity of steel lattice domes has been on the rise due to decidedly lower mass and 
shorter construction time compared with solid domes [1]. As regards lattice domes, a geodesic dome is 
one of the widely used structural solutions. The initial surface of geodesic domes is the sphere divided 
into spherical triangles. The geodesic sphere, based on icosahedron is actually commonly used in 
graphics application to approximate a sphere because of the minimum amount of information that is 
needed to create the polygon necessary. Consecutive divisions of the spherical triangles decide the 
mesh refinement of the geodesic domes. 

Owing to the method of sphere division into spherical triangles, developed by Buckminster Fuller 
in 1954, geodesic domes gained in popularity. He patented two means of dome subdivision. The first 
solution involves connecting the centres of the sides of spherical triangle ABC with arcs of great 
circles. As a result, four spherical triangles are produced. Consecutive subdivisions follow the same 
pattern (figure 1a). In an alternative solution, three arcs of great circles of the spherical triangle ABC 
are drawn in such a way that they cross each side of the triangle at two points. Appropriately 
connecting numerals 1,2,3,4,5,6 (figure 1b) produces a spherical hexagon and three identical 
equilateral vertex triangles. Further subdivisions of triangles thus produced proceed in the same 
manner. 

Interest in Fuller’s domes has continued until the present day. Other arrangements in the 
subdivision of the spherical mesh of regular icosahedrons have been proposed. In one of the options, 
regular hexagons are produced, and also, regardless of the frequency, 12 regular pentagons located at 
the vertices of regular icosahedron.  
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Figure 1. Two ways of subdivision of equilateral spherical triangle acc. the Fuller method 
 
The advantages of such a structural solution for steel covers include, among others, minimisation of 

material use, of the area (approx. 30% lower than in conventional structures) or a low number of 
different struts, especially for small spans. Disadvantages involve a necessity of designing one-
standard heating, or ventilation systems. That can result from the possibility of the occurrence of 
problems related to moisture condensation in the upper parts of the structure. Other difficulties 
concern technological issues such as installation of standard door and windows. However, geodesic 
domes are used as covers of the world’s largest building. The examples include Fukuoka Dome, with a 
diameter of 222 meters, a baseball park in Japan and Louvre Abu Dhabi museum, with a diameter of 
approx.180m, in the United Arab Emirates [2]. 

2.  The Spherical-Coordinate System 
The position of a point in three-dimensional space is clearly defined by three coordinates: 

• (x, y, z) - in the Cartesian system, 
• (r, θ, φ) - in a spherical system 
• (ρ, φ, z) - in a cylindrical system (figure 2). 

The coordinate system can be freely selected depending on the problem under consideration. 

 

Figure 2. Spatial coordinate systems 

 
The geometry of geodesic domes (spheres) is most conveniently described using a spherical 

coordinate system. Two angles θ and φ determine the direction and in combination with the distance 
r specify the position of the unique point in space. The φ coordinate resembles a meridian of 
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longitude. All points with the same φ lie on the same great circle, which passes through the zenith 
(0,0). It is convenient to incorporate the reference meridian φ=0 into calculations whenever it is 
possible. The first coordinate of all points situated on it will be zero. The θ coordinate resembles a 
specification of latitude, except that is measured down the φ circle from 0° at the zenith, instead of 
upward from the equator. In the spherical coordinate system, the equator is at θ=90°. All points whose 
second coordinate θ is 90 lie on the equatorial great circle. With the exception of these, all points with 
the same θ lie on the same lesser circle and specify a plane along which the dome can be truncated so 
it will sit flat. The r coordinate, is measured in units of length from the centre, specify how far out 
a point is to be found. If the points are on the surface of a sphere, like the vertices of a spherical 
geodesic structure, length r can be assumed as 1 and virtually disregard it. The angles θ and φ tell all is 
necessary to know about the structure. If the envelope of the system is other than spherical, then 
varying values of r will have to be taken into account. If we know the coordinates θ1, φ1, r1 and θ2, φ2, 
r2 of two points, then we can find the distance between them by inserting these values into an 
equation (1). The unit of d value will be the same as unit of r, and if r=1 the result d will be a chord 
factor. 
   d = ඥ2 − 2{cos𝛩ଵcos𝛩ଶ + cos(𝜑ଵ − 𝜑ଶ)sin𝛩ଵsin𝛩ଶ}  (1) 

 
Knowing the appropriate values of angles and radius, we can transform the spherical coordinates 

into the Cartesian system using the formulas: 
x=r sinθcosφ 
y=r sinθsinφ      (2) 
z=r cosθ 

 
This method permits a standardized procedure of coordinate determining. All chord factors are 

found by exactly the same routine, and all are found independently, errors are isolated, and do not 
affect other computations. By using a good pocket calculator, which can quickly change angles into 
their sines and cosines, permits us to run through the chord-factor equation for each pair of points in 
less than a minute, even when coordinates are cumbersome [3]. 

3.  Mode of stability loss 
Stability is the fundamental issue related to the steel building structural system. Structural stability 
involves the capability of the structure to maintain unchanged position and shape under loads acting 
on it. As regards steel buildings, stability is crucial importance because of the slenderness of the 
members. Structures are exposed to a hazard of a sudden occurrence of stability loss when they are 
subjected to massive compressive loads. The theory of stability deals with the determination of critical 
load capacity and critical states of the structure, i.e. states, which are accompanied by rapid changes in 
the form of its deformation or the value of displacements of certain points. In the stability theory, we 
can distinguish three basic types of loss of stability [4-10]. The first is local buckling in which the 
critical load capacity of individual bars is exceeded. Geometrical interpretation of buckling length 
coefficient of compressed bars is shown in figure 3. 

 
The other two modes are related to the concepts of limit and bifurcation points. The structure 

behaviour associated with the loss of stability at the limit point is called a snap-through. 
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Figure 3. Geometrical interpretation of buckling length of compressed bars. 

The example of node snap-through on the simplest lattice structure - Mises truss - presents the real 
situation that can occur in the lattice domes (figure 4a). In the case the loss of stability occurs at the 
bifurcation point, the resulting behaviour of the structure is called bifurcation buckling. Two different 
examples of bifurcation buckle mode: symmetrical and antisymmetrical are presented in figure 4b.  

 

Figure 4. Geometrical interpretation of two different forms loss of stability: a) snap-through, b) 
bifurcation  

 
To ensure appropriate and safe operation of the structure, i.e. it’s being in the state of static 

equilibrium, the value of equilibrium (critical load capacity) and eigenvectors (buckling modes) must 
be determined. The stability analysis of bars structures by means of the finite element method involves 
the solution of large systems of nonlinear equations. In the paper for the solution of nonlinear equation 
the incremental-iterative method constant arc length is applied [11]. 
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4.  Results and discussions 
In the paper, two computational models, namely 3V and 4V were taken into consideration. They differ 
in the frequency of subdivision of spherical triangles. For 4V model, two types of structures, truss and 
frame ones, were analysed. In each model, the rise is 6,448.253 mm, and span is 20,866.986 mm. The 
elements of the structure are assumed to be made of RO70x5 steel pipes with yield point fy=235 MPa 
and Young’s modulus E=210 GPa. One-parameter nodal load was taken into account. In the analyses, 
the values of the critical load capacity were determined and the most stressed struts were identified for 
each case. 

3V model represents a geodesic dome composed of 31 nodes and 75 struts (figure 5), and the dome 
coordinates of nodes are listed in table 1. In 4V model, 51 nodes and 130 struts were generated. They 
are presented in figure 6, and their geometry - in table 2. 

 

 

Figure 5. Mesh of the 3V geodesic dome model 

 

 

 



WMCAUS 2018

IOP Conf. Series: Materials Science and Engineering 471 (2019) 052051

IOP Publishing

doi:10.1088/1757-899X/471/5/052051

6

 
 
 
 
 
 

 

Table 1. Geometry of 3V geodesic dome model 

No. of 
node x [mm] y [mm] z [mm] No. of 

node x [mm] y [mm] z [mm] 

1 0.000 0.000 11665.000 17 -8515.748 -5241.756 6006.518 
2 -3808.358 1237.411 10956.160 18 -9970.412 -764.762 6006.518 
3 0.000 4004.345 10956.160 19 -9922.842 3224.127 5216.747 
4 3808.358 1237.411 10956.160 20 -7616.717 6479.166 6006.518 
5 2353.695 -3239.583 10956.160 21 -3808.358 9246.101 6006.518 
6 -2353.695 -3239.583 10956.160 22 0.000 10433.493 5216.747 
7 -6734.791 -2188.266 9269.644 23 3808.358 9246.101 6006.518 
8 -7616.717 2474.821 8481.339 24 7616.717 6479.166 6006.518 
9 -4162.330 5728.955 9269.644 25 9922.842 3224.127 5216.747 

10 0.000 8008.690 8481.339 26 9970.412 -764.762 6006.518 
11 4162.330 5728.955 9269.644 27 8515.748 -5241.756 6006.518 
12 7616.717 2474.821 8481.339 28 6132.653 -8440.873 5216.747 
13 6734.791 -2188.266 9269.644 29 2353.695 -9718.749 6006.518 
14 4707.390 -6479.166 8481.339 30 -2353.695 -9718.749 6006.518 
15 0.000 -7081.378 9269.644 31 -6132.653 -8440.873 5216.747 
16 -4707.390 -6479.166 8481.339    

 
Figure 6. Mesh of the 4V geodesic dome model 
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Table 2. Geometry of 4V geodesic dome model 
No. of 
node x [mm] y [mm] z [mm] No. of 

node x [mm] y [mm] z [mm] 

1 0.000 0.000 11665.000 27 6132.653 5216.747 8440.873 
2 -1721.998 -2370.127 11291.122 28 8358.753 2715.924 7669.891 
3 -2786.251 905.308 11291.122 29 8027.748 -615.753 8440.873 
4 0.000 2929.638 11291.122 30 6856.515 -4220.437 8440.873 
5 2786.251 905.308 11291.122 31 5165.994 -7110.380 7669.891 
6 1721.998 -2370.127 11291.122 32 3443.996 -9480.507 5859.276 
7 0.000 -5216.747 10433.493 33 0.000 -9922.842 6132.653 
8 -3604.683 -4961.421 9922.842 34 -3443.996 -9480.507 5859.276 
9 -4961.421 -1612.063 10433.493 35 -6132.653 -8440.873 5216.747 

10 -5832.500 1895.094 9922.842 36 -7952.245 -6205.072 5859.276 
11 -3066.327 4220.437 10433.493 37 -9437.183 -3066.327 6132.653 
12 0.000 6132.653 9922.842 38 -10080.751 345.797 5859.276 
13 3066.327 4220.437 10433.493 39 -9922.842 3224.127 5216.747 
14 5832.500 1895.094 9922.842 40 -8358.753 5645.561 5859.276 
15 4961.421 -1612.063 10433.493 41 -5832.500 8027.748 6132.653 
16 3604.683 -4961.421 9922.842 42 -2786.251 9694.221 5859.276 
17 1895.094 -7825.120 8440.873 43 0.000 10433.493 5216.747 
18 -1895.094 -7825.120 8440.873 44 2786.251 9694.221 5859.276 
19 -5165.994 -7110.380 7669.891 45 5832.500 8027.748 6132.653 
20 -6856.515 -4220.437 8440.873 46 8358.753 5645.561 5859.276 
21 -8027.748 -615.753 8440.873 47 9922.842 3224.127 5216.747 
22 -8358.753 2715.924 7669.891 48 10080.751 345.797 5859.276 
23 -6132.653 5216.747 8440.873 49 9437.183 -3066.327 6132.653 
24 -3066.327 7444.563 8440.873 50 7952.245 -6205.072 5859.276 
25 0.000 8788.913 7669.891 51 6132.653 -8440.873 5216.747 
26 3066.327 7444.563 8440.873  

4.1.  3V geodesic dome – truss model 
The first case considered in the paper is frequency (3V) geodesic dome, modelled as a truss structure. 
Two types of analyses were conducted, namely linear buckling and non-linear statics [1]. Capacities of 
individual struts were verified. The results of individual analyses are shown in table 3. 

Table 3. Results of analysis for 3V geodesic dome model 

 Linear 
buckling 

Nonlinear 
statics 

Nonlinear statics when bar 
capacity is taken into account 

Limit value of load 
multiplier 2887.24 1629.12 36.81 

 
As regards 3V geodesic dome, the most stressed struts are those no. 12, 15, 18, 21 and 24. The 

analyses carried out for the study showed that a decisive mode of stability loss is local buckling of 
struts, whereas a global mode of stability loss is snap-through of the nodes. Buckled structure form, 
together with values of axial forces after the ultimate capacity of the struts is reached can be seen in 
figure 7.  
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Figure 7. Buckled structure together with values of axial forces after the ultimate capacity is reached 

for 3V model 

4.2.  4V geodesic dome – truss model 
The second example concerns 4Vgeodesic dome that was modelled as a truss structure. The same 
analyses were conducted as for case 4.1, and the results are listed in table 4.  

Table 4. Results of analysis for 4V geodesic dome truss model 

 Linear 
buckling 

Nonlinear 
statics 

Nonlinear statics when bar 
capacity is taken into account 

Limit value of load 
multiplier 1097.45 412.30 45.46 

 
As regards 4V geodesic dome modelled as a truss structure, struts no. 38, 43, 48, 53 and 58 turned 

out to be the most stressed ones. Again, the decisive mode of stability loss is local buckling of the 
struts. The analyses indicate that the global mode of stability loss is the snap-through of nodes. 
Buckled structure form, together with values of axial forces after the ultimate capacity of the struts is 
reached is illustrated in figure 8. 

 
Figure 8. Values of axial loads after the critical load capacity is reached for 4V truss model 
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4.3.  4V geodesic dome– frame model 
In the last example, 4V geodesic dome was modelled as a frame structure. The analyses were 
conducted in the same way as for two previous cases. The results are compiled in table 5. 

Table 5. Results of analysis for 4V geodesic dome frame model 

 Linear 
buckling 

Nonlinear 
statics 

Nonlinear statics when bar 
capacity is taken into account 

Limit value of load 
multiplier 92.60 93.22 44.96 

The analysis showed that for the frame model, local buckling of struts is again a dominant mode of 
stability loss. However, the mode of global stability loss is changed and it occurs by bifurcation point 
of the equilibrium path. In this model, struts no. 38, 43, 48, 53 and 58 are the most stressed ones. 
Buckled structure form, and values of axial forces after the ultimate capacity of the struts is reached 
are presented in figure 9. 

 

Figure 9. Values of axial forces after the limit load is reached for the 4V frame model 
 
It should be added that to conduct analysis with Robot Structural Analysis program, it is necessary 

to account for the strut type and appropriate buckling length coefficients related to the stiffness of the 
restraint. In the case above, the default value of the buckling length coefficient μ=1.0 was analysed. To 
better illustrate the impact of coefficient μ on the capacity of the structure, the same analyses were 
made for two other options offered by the program μ: 0.5 and 0.7. The coefficient values significantly 
affect a change in the limit capacity of the struts, the respective values are 77.82 kN for μ=0.7, and 
91.80 kN for μ=0.5. Subsequent papers will focus on the determination of the accurate stiffness of the 
connection and the buckling length coefficient.  

5.  Conclusions 
In the paper, the effect produced by an increase in the density of nodes in the geodesic dome on the 
structure limit capacity was discussed. Two computational models were considered, namely 3V and 
4V, which differ in the density of nodes. Additionally, for 4V model, two types of strut connections in 
the nodes were verified. 

Due to the height-to-span ratio of 0.309, the structure of concern is classified as high-rise dome. 
Buckling of bars was found to be a decisive mode of local stability loss in all models. Global modes of 
stability loss differ in cases 4.1-4.2 than 4.3. For the structures modelled as spatial trusses, node snap-
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through is the global mode of stability loss, whereas for the frame structure, it is the bifurcation of the 
equilibrium path. It should be added that even when the structure is modelled taking into account bar 
buckling coefficient μ=0.5, which corresponds to a rigid connection, the local or global modes of 
stability loss do not change.  

The effect of single-layer shallow lattice dome modelling on the critical load capacity was 
discussed in paper [12].  
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