IOP Conference Series: Materials
Science and Engineering

PAPER « OPEN ACCESS You may also like

. . . - Detection technology of malicious code
Mal-XT: Higher accuracy hidden-code extraction of fhivbacimplsmicu

Guodong Wang, Tianliang Lu and Haoran

packed binary executable Yin

- Burst mode in a cooled packed-bed

,) _ dielectric barrier discharg tor for CO,
To cite this article: Charles Lim et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 453 012001 Sg'e,iﬁfng”c atfierciscane feactoror

Jesse Santoso, Mingming Zhu and
Dongke Zhang

- Malicious Code Detection Method Based

View the article online for updates and enhancements on Staic Feaures and Ensemble Learnin
article online p : Wei Li, Chenyi Zhang, Jieying Zhou et al.

c '. o ; " - DISCOVER

how sustainability

The ., Ak intersects with
Electrochemical ¢ ' |
Society

Advancing solid state &
electrochemical science & technology

This content was downloaded from IP address 3.14.253.221 on 05/05/2024 at 01:58

https://doi.org/10.1088/1757-899X/453/1/012001
https://iopscience.iop.org/article/10.1088/1742-6596/1650/3/032078
https://iopscience.iop.org/article/10.1088/1742-6596/1650/3/032078
https://iopscience.iop.org/article/10.1088/2516-1067/ac0095
https://iopscience.iop.org/article/10.1088/2516-1067/ac0095
https://iopscience.iop.org/article/10.1088/2516-1067/ac0095
https://iopscience.iop.org/article/10.1088/1742-6596/2010/1/012165
https://iopscience.iop.org/article/10.1088/1742-6596/2010/1/012165
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsv1YIoRNH_DoXRA2OaqlrAo6KT7C9Axg-36ATmMfUQ9zTILn5cL3oVjxFcNWbgQ_2B8OwLI8DiTAQO9shgExJPa_I2pn11ICcLYCrE44Uz86OlT-bvbJsSYgUfWruacJh6569TWVdBieTQlSkUdyiNUBzyiXfZ8je1K8z74ynyMr-phT8my2tnQTs4FFADRQATjftM3KB6SyHx-vWrjCpxHdOjyB-u4u9cGO1RT0OXngYMcqpyPUw94C_rbox0fAXJA0bLj_SsIoTQhxUtU1nv-Q8lfzrR9ejYTSg57U4J3aw4hamZ1838kXz2MjybqKOBaE2ula13SSQwq_0PISZj7ZSYNpA&sig=Cg0ArKJSzL65Y2bK3bFr&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

International Conference on Design, Engineering and Computer Sciences 2018 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 453 (2018) 012001 doi:10.1088/1757-899X/453/1/012001

Mal-XT: Higher accuracy hidden-code extraction of
packed binary executable

Charles Lim'?, Suryadi?, Kalamullah Ramli4, Suhandi®

14Department of Electrical Engineering, Universitas Indonesia, Kampus Ul, Depok
16424, Indonesia

ZInformation Technology Department, Swiss German University, Kota
Tangerang, Banten 15143, Indonesia

*Department of Mathematics, Universitas Indonesia, Kampus UI, Depok 16424,
Indonesia

E-mail: charles.lim@sgu.ac.id

Abstract. Malware authors often use binary packers to hinder the malicious code from reverse-
engineered by malware analyst. There have been many studies done on providing different
approaches on unpacking the packed binary executable. Our previous works have successfully
relied on the written memory section size as an indicator to extract hidden-code during the
unpacking process. This paper enhances our previous work by locating executed instruction in the
written memory section to provide a more precise memory location in extracting hidden code from
the packed binary executable. The result of our experiments exhibits higher similarity result for all
packers and benign applications compared to our previous works.

1. Introduction
Malicious software (malware) is one of the largest security threats to individuals and/or organizations that
shared sensitive and valuable information. To persist in the computer systems, malware authors commonly
use various evasion techniques from being detected by anti-malware systems. One of such techniques is
code obfuscation, which includes software packer, polymorphism or metamorphism. Code obfuscation has
been used to protect the software intellectual property, making it harder for software analyst to reverse-
engineer it to obtain the original body of the software. In the case of software packer, it is used not only to
decrease the size of binary executable but also to encrypt the original source code in such that the source
code can be hidden or protected from being reverse-engineered.

With the exponential increased number of malware and 80% of these malwares in the wild are packed
[1, 2], this condition makes the tasks of malware analyst even much more complex. A packed binary
executable hides the original code and required libraries and with the possibility Import Address Table
(IAT) being removed from the binary executable. Thus, commonly used static analysis method of analyzing
malware becomes limited if not impossible [3]. Dynamic analysis (and combined with memory analysis)
provides more promising alternative approach for analyzing malware. The original code from malware is
usually loaded into memory sometime during the execution and obtaining the memory image at the point
when the exposed hidden-code in memory becomes possible [4]. Our previous works, Mal-Xtract [5]
proves that it is possible to extract hidden-code from packed binary executable by tracking the use of the
consecutive memory address in a section to determine that the unpacking process is completed.

In this paper, we propose a method to detect the end of unpacking routine based on the written memory
section [5] with the instruction inside the memory section being executed. We argue that the proposed
method provides a better accuracy then Mal-Xtract since the executed instruction in one of the memory
sections provides an indication that unpacking routine is completed. With the combined tracing of written
memory section and executed instruction inside this section provides a more precise indicator of the
completion of unpacking process, thus hidden-code can be extracted with higher accuracy.

The contributions of this paper can be listed as follows:

(1) We develop framework to extend the method presented in the previous work [5] to indicate a more
precise end of unpacking by detecting the latest memory address executed in the memory section being
observed.

(i) We propose an enhanced memory analysis method that traces exact memory sections resulted from
Mal-Xtract framework that have the first instruction being executed in the relevant memory sections.

The remainder of the paper is organized as follows: section 2 explains the related works of this research.
Section 3 discusses our Mal-XT unpacking framework. Section 4 elaborates on the experiment setup and
section 5 introduces our preliminary study to lay the foundation work of packed binary code analysis. Next,

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

http://creativecommons.org/licenses/by/3.0

International Conference on Design, Engineering and Computer Sciences 2018 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 453 (2018) 012001 doi:10.1088/1757-899X/453/1/012001

section 6 presents the experiment results of this paper. Section 7 provides the analysis and discussion of
experiments of our research. Finally, section 8 concludes our research and future works.

2. Related Works

Once the packed binary executable loaded into memory starts to unpack the original body of the code,
Original Entry Point (OEP) pointed to by instruction pointer becomes the starting point of the
execution of the hidden-code [6]. Isawa et al [6] uses the page extraction technique by tracking specific
writing instructions, such as ‘mov’ and ’xchg’, to detect written memory pages. Isawa et al considered
the first executed instruction become the first candidate for the OEP.

PolyUnpack [7] uses static and dynamic integrated approach to compare the dynamically
disassembled code in memory with the statically disassembled packed code. When the disassembled
dynamic code is not found in the statically disassembled code, the dumped memory produces
dynamically generated code. The disadvantage of this approach is the added disassembly step which
complicates the process since many packers employ obfuscation that hinders the disassembly process
[8]. Another weakness of PolyUnpack is that the whole process of disassembly will fail if there is one
mistake during disassembly process.

Renovo [9] monitors a clean-dirty page (the written memory address is marked as dirty and the rest is
clean) and specific jump instructions such as ’jmp’ and ’je’, to detect OEP of the packed binary
executable. Similar to Renovo, OmniUnpack [10] utilizes page extraction technique with WX (written
then executed) policy, however OmniUnpack scans the newly generated memory page when there is a
pre-defined dangerous system call is being executed. The disadvantages of OmniUnpack are the
imprecision of page level tracking and continuous manual signature update is required to detect selected
dangerous system calls being monitored. Justin [11] also uses the same WX approach by
intercepting NX bit exceptions to memory pages marking. However, the reliance on anti-virus signature
database reduces the effectiveness of Justin in OEP detection.

SoK Deep Packer Inspection [12] sets out the goal of mapping packer complexity and it monitors all
memory written frame and execution of each memory frame to track down possible OEP. SoK provides
information on executed memory region which include memory type and address, size and number of
unpacking frames. Basically, it will monitor all the execution trace and memory write process. For
every new memory frame written, it monitors for the execution for each memory frame that newly
created.

Mal-xtract [5] proposed a method to investigate the memory (written and re-written) section to
determine the latest hidden-code that written in the memory section. In addition, it uses memory section
threshold to determine which of the section are responsible for unpacking process. Our research is based
on Mal-Xtract framework with additional monitoring on executed instruction in the selected memory
section to determine the final OEP of the packed binary executable. Table 1 summarizes the comparison
of Mal-XT framework and other related works.

Table 1. Mal-XT Framework and comparison with other approaches

Key Items Renovo [9] SoK [12] Mal-Xtract [5] Mal-XT
Memory Access User & Kernel User & Kernel User & Kernel User & Kernel Space
Space Space space Space
Features Runtime Memory Executed Memory Access Memory Access Write &

Instruction Instruction Write & Read Read, Executed Instruction
Trace
End of Specific memory Latest frame & ~ Written Memory ~ Written Memory Section
Unpacking Write instructions* executed control ~ Section threshold ~ with executed instruction
Detection flow found in the memory
section

*mov %eax, [%edi] and push %eax

3. Research Framework

Our research framework, Mal-XT, extends Mal-Xtract framework [5] by adding additional execution
tracing on the consecutive address of written memory section monitored by Mal- Xtract. Hence, memory
written section size that exceeds the pre-determined threshold is an indicator for end of unpacking
process. The list of all qualified written memory sections is stored in the sections’ data log, which the
is used by Mal-XT to discover the potential executed instruction inside these memory sections. The
execution trace performed by Mal-XT captures the following: memory address being executed, CR3
register value (indicating the related process ID being executed), and instruction counts. Mal-XT will
use this information and the sections data log information to determine all the potential written memory

International Conference on Design, Engineering and Computer Sciences 2018 IOP Publishing
IOP Conlf. Series: Materials Science and Engineering 453 (2018) 012001 doi:10.1088/1757-899X/453/1/012001

section and executed. Figure 1 shows Mal-XT framework with highlighted block that shows additional
process to track executed instructions from written memory sections.

The algorithm that implements the execution trace is depicted in Algorithm. The correlation each
line of memory section shown in line 4 and execution trace in line 5 is performed. When the content
of the memory address being executed is within range of memory section then relevant memory section
is marked executed as indicate in line 8 and relevant instruction count is also marked (line 9). From
the list of marked memory sections with the relevant instruction count were processed and the first
memory section executed is selected to provide the OEP of the hidden-code.

Memary Maﬁ:iﬂu? Ein_arv
Packed Windows. T~ WritenLog --1 > App \l‘ahd_ati_nn
Benign binary L 1 (using Statistics)
executables H |
H ¥
- Determine "
2 o f Run PANDA Run PANDA Extract EXE
ecordifg ol L = > P [—# Extract sections | memory sections —# 3 feo
binary execution exectrace plugins bufmon ST, all alive proces
Packed Malicious T T
binary i i Benen B
executables ! ' 5 nign Binary
g ze—d ! R e) B | App. validation
: ' P jusing Smitarity)
'
! Instruction H
-------------- P execution pessssssssesecccaaaaadd
Log

Figure 1. Mal-XT Research Framework

Algorithm Execution Trace Algorithm

l: procedure Instruction Trace Analysis > Corelate Instruction Log to the Memory section

2: Replay the Recording using EXECTRACE > Get all executed Instruction Log from PID
3: /=1

4: while Line(l) <> EndOfMemorySectionLogs do

S: while Line2(m) <> EndofExectraceLog do

6: if executed.address(m) > first.address.of.section(l) AND
7: executed.address(m) <= last.address.of.section(l) then
8: Mark Memory Section as executed

9: Get Instruction Count number

10: else

11: Going for next Line2

12: m++

13: I+ +

Once the memory address with the relevant instruction count is determined, the physical memory
dump can be performed to extract the relevant binary executable from memory. The extracted binary
executable can then be validated: Similarity score [13] is used for measuring the extracted binary
executable from packed benign binary executables and packed status of
the extracted binary executable from packed malware executable. As explained by Lyda et al
[14], entropy analysis alone is not enough for validating packed binary executable, additional
statistical test is included, i.e. Arithmetic Mean Value, Chi-square and Serial Correlation to
improve the accuracy in determining packed status of the binary executable being investigated.

4. Experiment Setup

All experiments are performed on HP Proliant DL380 G7, 256 GB RAM using VMWare ESXi 6.0
as hypervisor, Ubuntu 16.04 with 128 GB RAM and 4 Core Processor as guest OS. PANDA [15],
dynamic analysis tool used in this research, requires QEMU to be installed inside Ubuntu VM and
runs Windows 7 32bit SP1 (with 2 GB RAM for its QEMU VM Emulation). Finally, all binary
executable samples are executed on Windows 7 32bit SPI1.

The benign executable samples (a total of 26 benign applications) are collected from Windows 7
32bit SP1 System32 files. These benign executables are packed with a collection of third party either free
or commercial binary packers, i.e. UPX, PECompact2, FSG, Armadillo, Molebox, WinUPack,
Themida, VMProtect, ASPack, and ASProtect. Malware samples dataset are collected from
VirusTotal [16] and VirusShare [17] which consist of 9 families, each family has a minimum of 30
malware samples. Malware families include Dynamer!rfn (2017), Awkolo.A (2017), Expiro.BA (2012),
Expiro.BP (2013), Zonsterarch.U (2013), Zuepan.A (2017), Dorkbot.A (2011), Urelas.AA (2015) and
Bicone!rfn (2016). All malware family samples are submitted to Packerinspector, an online service
based on SoK [12] to ensure all malware are packed malware.

International Conference on Design, Engineering and Computer Sciences 2018 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 453 (2018) 012001 doi:10.1088/1757-899X/453/1/012001

5. Preliminary Study

To validate our extracted binary executables, statistical analysis is performed to ensure that the binary
executables already unpacked. A preliminary study is conducted to gather 42 benign Windows 7 32-bit
binary applications and each of these files are packed with 16 common packers (a total of 672 files).
The statistical analysis for Entropy, Chi Square, Arithmetic Mean Value, and Serial Correlation are
calculated [18] to provide a final threshold for each. The summary of the results of the statistical
threshold value calculation is shown on Table 2.

Table 2. Statistical Analysis Thresholds (packed & non-packed benign files)

Files Qty ENT CcQ AM SC (%)
Non-Packed EXE (AVG) 42 635 16,041,38326 98.96 41.04
Packed EXE (AVG) 672 7.49 3,707,376.90 114.56 22.00
Threshold 6.92 9874380.08 10676 31.52

AVG = Average; QTY = Sample Quantity; ENT = Entropy
CQ = Chi-Square; AM = Arithmetic Mean; SC = Serial Correlation

The binary executable is considered packed if 3 (three) of 4 (four) statistical is satisfied. If only 2
(two) of 4 (four) statistical criteria are met additional validation is required. Byte Histogram [19] is
used to provide extra validation on this condition. Otherwise the binary executable is considered non-
packed.

6. Experiment Results

We evaluate 3 (three) benign applications with 8 commonly used binary packers using our Mal-XT
framework, the similarity results of the extracted binary executables is computed and compared with
Mal-Xtract results, as shown in Table 3.

Table 3. Benign Executable Similarity (%) Results

Notepad Helloworld Cal
Packers
ENT‘ Xtrac‘ XT ENT\ Xtrac‘ XT ENT\ Xtrac‘ XT
UPX FSG 417 996 100 445 991 999 472 99.8 9938
MOLEBOX 463 998 100 515 998 100 026 99.8 999
PEC2 532 99.6 999 414 990 996 553 998 100

ARMADILLO 427 996 999 425 992 100 092 998 100
VMPROTECT 175 996 999 346 99.0 99.6 252 988 99.9
WINUPACK 538 975 977 547 973 975 423 972 974
THEMIDA 431 996 999 543 996 999 533 99.8 98.9

A o PaVe Ry A ma o am

ENT = Entropy; Xtract = Mal-Xtract; XT = Mal-XT

The similarity results demonstrated that our extraction method using Mal-XT successfully
provide higher similarity results for all packers and benign applications compared with Mal- Xtract
results. Even though some similarity reach 100%, some packers such as Themida and VMProtect
show a lower similarity results due to many protection layers performed by these packers as
confirmed by Mal-Xtract [5].

Table 4 shows statistical validation results of extracted hidden-code from packed malware
samples. Detail malware samples for the relevant malware family can be found at Table 5 in

International Conference on Design, Engineering and Computer Sciences 2018 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 453 (2018) 012001 doi:10.1088/1757-899X/453/1/012001

the Appendix. Statistical Analysis is used to confirm the status of the binary executable (packed or
non-packed) and Table 4 confirms that each of extracted binary executables is a non-packed binary
executable.

Table 4. Statistical Analysis Result on Extracted Binary Executable (Malware)

Malware Family Samples ENT cQ AM SC (%) Packed?
A 6.35 28,703,970.10 95.53 36.48 NO
Urausy
B 6.34 30,305,721.51 95.89 36.84 NO
Salit A 1.51 18,342,494.34 16.19 69.80 NO
1
v B 1.85 87,303,712.78 18.36 67.41 NO
A 5.78 4,539.318.59 67.91 29.90 NO
Awkolo.A B 5.78 4,539,255.01 67.88 29.85 NO
A 4.11 155,528,902.88 55.16 63.84 NO
Expiro.BA B 4.41 141,833,604.19 61.51 66.66 NO
A 425 165,406,348.60 57.16 61.21 NO
Expiro.BP B 4.24 165,512,763.06 58.13 62.17 NO
A 6.66 6,157,657.67 99.93 44.46 NO
Urelas.AA B 271 82,099,075.91 36.13 69.96 NO
A 6.30 2,163,801.11 93.76 43.27 NO
Zuepan. A B 5.86 3,045,047.62 86.22 47.41 NO
Crypto A 6.39 1,977,198.45 104.80 26.62 NO

AVG = Average; ENT = Entropy; CQ = Chi-Square; AM = Arithmetic Mean; SC = Serial Correlation

7. Discussion

The experiment results show that by tracking the last instruction executed after the written memory
section provide higher similarity results compared with just using written memory section alone. The
lowest similarity result is 97.4% (Themida) and the highest similarity reach 100% (UPX, FSG,
Molebox, PEC2). For the extracted binary executable from malware samples also have been shown
to be unpacked and the extracted binary executables when uploaded to VirusTotal were categorized
as the same family malware.

8. Conclusion

In this paper, we introduce Mal-XT framework that monitors executed instruction found in the written
memory section as an indicator that the unpacking process is completed. The experiment results
demonstrate a higher similarity result for all packers and benign applications compared to our
previous works. We believe our method of hidden-code extraction will help malware analyst in
gaining insight to malicious code of packed malware. We hope to improve our research in the future
to differentiate between code and data found in malware.

9. Acknowledgements

We would like to thank the Honeynet Project and VirusTotal for providing various malware family
samples used in our research. This article’s publication is supported by Universitas Indonesia’s
PITTA 2018 Grant with contract no 2463/UN2.R3.1/HKP.05.00/2018.

International Conference on Design, Engineering and Computer Sciences 2018 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 453 (2018) 012001 doi:10.1088/1757-899X/453/1/012001

10. Appendices
Below are the list of malware family and samples used in this research.

Table 5. Malware Families and Samples List

Malware Family Samples MDS Value
Urausy A 2ef3d3152146¢2581466cece68f6e2f3
B 0c6deb746d1a85d38cb7a5a411d629fd
Sality A 1eabb49197516e3¢294a413f83b8ba68
B 269930834b1148df9483739dad487775
Awkolo.A A ¢6¢954d5a5¢3100c08308c4c¢7710f405
B abe0999bafdec20fa3 1fdfa689d8c683
A 0a040bd5acb8a542f3ef2120a406e192
Expiro.BA B 1b3ab3b1c9d465bdel 5852fc03cf120¢
A ec9¢91ec990013e4£c20e1207¢7¢5951
Expiro.BP B d4d5098cbb965d228bef7d38a98a9¢cO
A d834e474e7ae0bb4c60eda8a3dd0c90a
Urelas.AA B ¢7c0e0e3c218dc4a393cb4736555102f
A ¢3f153d6847balc70f3d97f72251d973
Zuepan. A B e2eb2b673751d176e8ebe487c6ech238
Crypto A 53c85399809a8fc399bfd82d6145ced

References

[1]. Osaghae E O 2016 International Journal of Information Technology and Electrical
Engineering 20 19 URL http://www.iteejournal.org/Download decl16 pdf 4.pdf

[2]. Ugarte-Pedrero X, Santos I, Sanz B, Laorden C and Bringas P G 2012 Countering entropy
measure attacks on packed software detection IEEE Consumer Communications and
Networking Conference (CCNC) 2012 (IEEE) pp 164-168 URL
http://dx.doi.org/10.1109%2FCCNC.2012.6181079

[3]. Moser A, Kruegel C and Kirda E 2007 Limits of static analysis for malware detection
Twenty-third Annual Computer security applications conference (ACSAC) 2007 (IEEE)
pp 421-430 URL https://doi.org/10.1109/ACSAC.2007.21

[4]. Babar K and Khalid F 2009 Generic unpacking techniques Computer, Control and
Communication, 2009. IC4 2009. 2nd International Conference on (IEEE) pp 1-6

[5]. Lim C, Kotualubun Y S, Suryadi and Ramli K 2017 Journal of Physics: Conference Series
801 012058 URL https://doi.org/10.1088/1742-6596/801/1/012058

[6]. IsawaR, Inoue D and Nakao K 2015 IEICE TRANSACTIONS on Information and Systems
98 883-893

[7]. Royal P, Halpin M, Dagon D, Edmonds R and Lee W 2006 Polyunpack: Automating the
hidden-code extraction of unpack-executing malware Computer Security Applications
Conference, 2006. ACSAC’06.22nd Annual (IEEE) pp 289-300 URL
http://dx.doi.org/10.1109/ACSAC.2006.38

[8]. Roundy K A and Miller B P 2013 ACM Computing Surveys (CSUR) 46 4 URL
http://dx.doi.org/10.1145/2522968.2522972

[9]. Kang M G, Poosankam P and Yin H 2007 Renovo: A hidden code extractor for packed
executables Proceedings of the 2007 ACM workshop on Recurring malcode (ACM) pp 4653
URL https://doi.org/10.1145/1314389.1314399

[10]. Martignoni L, Christodorescu M and Jha S 2007 Omniunpack: Fast, generic, and safe
unpacking of Malware Twenty-Third Annual Computer Security Applications Conference
(ACSAC) 2007 (IEEE) pp 431441 URL http://dx.doi.org/10.1109/ACSAC.2007.15

International Conference on Design, Engineering and Computer Sciences 2018 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 453 (2018) 012001 doi:10.1088/1757-899X/453/1/012001

[11]. GuoF, Ferrie P and Chiueh T C 2008 A study of the packer problem and its solutions Recent
Advances In Intrusion Detection (Springer) pp 98—115 URL https://doi.org/10.1007/978-3-
540-87403-4 6

[12]. Ugarte-Pedrero X, Balzarotti D, Santos I and Bringas P G 2015 Sok: deep packer
inspection: a longitudinal study of the complexity of run-time packers IEEE Symposium
on Security and Privacy (SP) 2015 (IEEE) pp 659-673

[13]. Lueker G S 2009 Journal of the ACM (JACM) 56 17

[14]. Lyda R and Hamrock J 2007 IEEE Security & Privacy 5 4045 URL
https://doi.org/10.1109/MSP.2007.48

[15]. Dolan-Gavitt B F, Hodosh J, Hulin P, Leek T and Whelan R 2014 Repeatable reverse
engineering for the greater good with panda Tech. rep. Department of Computer Science,
Columbia University URL http://dx.doi.org/10.7916/DSWM1C1P

[16]. VirusTotal 2018 Virustotal - analyze suspicious files and urls to detect types of malware
including viruses, worms, and trojans. https://www.virustotal.com

[17]. Virusshare 2017 Virusshare http://http://virusshare.com/

8]. Jacob G, Comparetti P M, Neugschwandtner M, Kruegel C and Vigna G 2012 A static,
packer-agnostic filter to detect similar malware samples International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment (Springer) pp 102—
122 URL https://doi.org/10.1007/978-3-642-37300-8 6

[19]. Wojner C 2016 Bytehist URL https://cert.at/downloads/software/bytehist en.html

