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Abstract. The purpose of this study is to create an application that functions automatically with 

high accuracy when analyzing bank customer data.  This needed due to non-performing loans 

occurring frequently caused by the inaccuracy of credit analysts in the assessment of 

creditworthiness. This can be seen in the incident occurred in a public bank located in Bandung. 

This bank does not have the database that serves to accommodate data history and the method 

used in assessing creditworthiness is merely based on the simple statistical analysis. This leads 

to reduced accuracy and speed in the decision-making process. This research applies Naïve 

Bayes Classifier (NBC) method, a Data Mining technique. This helps credit analysts to select 

customers who are truly eligible to be given credit so that non-performing loan can be avoided. 

NBC calculates the probability of one class from each group of attributes and determines which 

class is most optimal. The accuracy of the NBC sampling test from 500 data is 95% compared 

to the decision made by a credit analyst. It can be concluded that this application is very helpful 

for credit analysts in recommending customers who are eligible for a loan to the bank's decision 

maker. 

1.  Introduction 

In the banking world, one of the services offered to customers is loaning or credit. Credit will be given 

to qualified customers in accordance with the terms set by the bank. However, with the large number of 

customers applying for credits, errors performed by credit analysts occur frequently in selecting 

customers who are qualified to be given a loan [1,2]. This results in the individual as well as corporate 

customers’ inability to repay credit in a timely manner, which is also known as a non-performing loan. 

A non-performing loan is a condition wherein a customer is unable to pay the minimum payment that is 

overdue for more than three months [3]. Due to the presence of this condition, there is a need of a system 

that is able to make selections rapidly and make predictions accurately by utilizing existing information 

as a benchmark in the provision of credit to customers who are truly qualified [4,5]. 

In this research, an application will be developed by applying technology in the field of data mining 

that is able to function in finding data patterns that have not been known of previously. Data mining is 

an activity that involves the collection and use of historical data in order to find the regularity of patterns 

or relationships in large datasets [6,7]. The identification of data pattern is approached by conditional 

probability. Naïve Bayes Classifier (NBC) is one of the classification techniques in data mining that is 

able to predict the future opportunities based on the experience and then find a function that connects 

http://creativecommons.org/licenses/by/3.0


2

1234567890‘’“”

INCITEST IOP Publishing

IOP Conf. Series: Materials Science and Engineering 407 (2018) 012177 doi:10.1088/1757-899X/407/1/012177

 

 

 

 

 

 

past data pattern with the desired output [7]. This method will form a classification model after a number 

of instructional characteristics are given to determine the class that is suitable for an analyzed sample. 
By using NBC method in this application, it is expected that it is able to classify the data of customers 

who apply for credit in a large scale and work as a tool for credit analysts in determining whether or not 

a customer is qualified to receive a loan. 

The NBC technique has been applied to other studies. Patil and Sherekar have compared the 

evaluation results of Naïve Bayes classifier with J48 in the context of bank defaulters [8]. Naive Bayes 

classifier has shown good results; however, J48 was found to be more cost-efficient. Ginting and 

Trinanda found Naïve Bayes was more accurate in book searching for library applications [9,10]. The 

list of books can be displayed not only based on title, category or author but also based on the 

descriptions of the books. In his paper, Bustami applied the Naïve Bayes algorithm to classify insurance 

customer data based on payments history [11]. He used the result to determine future eligible customers. 

The purpose of this study is to develop an application by applying the Naïve Bayes Classifier, a well-

known data mining technique, to examine the feasibleness of an individual or corporate debtor. With 

the help of this application, banks are expected to be able to decide loan certainty more quickly and 

accurately. This application can also suppress the operational expenses with the ability to determine the 

area of credit that becomes the focus of the bank in the future. There have only been few studies 

commenced that were aimed at bank data analysis, particularly in Indonesia. Thus, the expectation from 

this study is that the result can be a reference for other studies of the same field. 

2.  Methods 

2.1.  Classification 

Data classification is a process that finds the same properties on a set of objects within a database and 

classifies them into different classes according to the established classification model. The purpose of 

classification is to find a model of a training set that differentiates attributes into appropriate categories 

or classes, the model is then used to classify the attributes of which the class are previously unknown 

[6,7]. 

2.2.  Naïve Bayes Technique  

Naïve Bayes Classification is a classification using probability and statistics method that predicts future 

opportunities based on the experience in the past known as Bayes theorem. The theorem is combined 

with Naïve in which the attribute condition is assumed independent [6,7,11]. 

2.3.  Naïve Bayes Classifier Technique 

NBC is a classification technique rooted in the Bayes theorem. The main characteristic of the Naïve 

Bayes Classifier is a very strong assumption (naive) to the independence of each condition or event. 

Before explaining the Naïve Bayes Classifier, Bayes theorem will be discussed first as, it is the base of 

the method. On the Bayes theorem, if there are two separate events (eg, A and B), the Bayes theorem is 

formulated as follows: [11,12,13]. 

𝑃(𝐴|𝐵) =
𝑃(𝐴)

𝑃(𝐵)
𝑃(𝐴|𝐵) (1) 

 

Here the high independence of assumption is used (naive), in which each guideline (F1, F2 ... ..Fn) 

is independent (independent) of each other. With this assumption, the application of a similarity is valid 

as follows: 

 

𝑃(𝐹𝑖 − 𝐹𝑗) =
𝑃(𝐹𝑖 ∩ 𝐹𝑗)

𝑃(𝐹𝑗)
=

𝑃(𝐹𝑖)𝑃(𝐹𝑗)

𝑃(𝐹𝑗)
= 𝑃(𝐹𝑖) 

For i ≠ j, so that 

𝑃𝑃(𝐹𝑖|𝐶, 𝐹𝑗) = 𝑃(𝐹𝑖|𝐶) (2) 
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From the equation above it can be concluded that the naive independence assumption makes 

opportunity requirements to become possible. Furthermore, the description (F1, F2, ..., Fn | C) can be 

simplified as follows: 

𝑃(𝐹1, … . , 𝐹𝑛|𝐶) = 𝑃(𝐹1|𝐶)𝑃(𝐹2|𝐶) … … 𝑃(𝐹𝑛|𝐶) 

𝑃(𝐹1, … . , 𝐹𝑛|𝐶) = ∏ 𝑃(𝐹𝑖|𝐶)

𝑛

𝑖=1

 
(3) 

 

With the above equation, Bayes theorem can be written as follows: 

𝑃(𝐹1, … , 𝐹𝑛|𝐶) =
1

𝑃(𝐹1, 𝐹2 … . , 𝐹𝑛)
𝑃(𝐶) ∏ 𝑃(𝐹𝑖|𝐶)

𝑛

𝑖=1

 

𝑃(𝐶|𝐹1, … . , 𝐹𝑛) =
𝑃(𝐶)

𝑍
∏ 𝑃(𝐹𝑖|𝐶)

𝑛

𝑖=1

 

(4) 

 

The above equation is a model of Naïve Bayes theorem which will then be used in the classification 

process. The Z presents the constant evidence for all classes on a single sample. 

2.4.  Data Source 

The data used is the historical data of a microcredit bank from 2010-2015 that taken from a database of 

a public bank in Bandung. The data is kept at the bank and can be obtained when customers apply for 

credit. This historical data is divided into two: data training and data testing.  

3.  Results and Discussion 

3.1.  Implementation Calculation Using NBC 

The above attributes will determine whether a customer will be given a credit (Eligible/Accepted) or not 

given the credit (Ineligible/Denied). But before deciding the two classes/categories, two stages are 

conducted namely the training process and the classification process. In the training phase, the search 

process of conditional probability value and the search process of prior probability value will be carried 

out. After the prediction model is built at the training process, the unknown data classification process 

is then performed. 

NBC is applied to several processes that have been described above. The output generated by the 

system is in the form of a conditional probability value, the prior probability value and the classification 

accuracy level. While the second is data predicted result namely the credit risk classes 

(Eligible/Accepted and Ineligible/Denied). The credit risk class used is the largest i.e. Eligible/Accepted 

obtained if P (Eligible | X) > P (Ineligible | X) where X is a known attribute. Instead Ineligible/Denied 

is obtained if P (Eligible | X) < P (Ineligible |X). 

When provided a new input, the bank customer data classification can be determined by the following 

steps: 

a. Counting the number of classes/labels. 

P (Y = Eligible) = 12/20, the number of data “Eligible” on data training is divided by the total number 

of data 

P (Y = Ineligible) = 8/20, the number of data “Ineligible” on data training is divided by the total 

number of data 

b. Calculating the number of the same case with the same class. 

P (Age = 41-55 | Y = Eligible) = 2/12 

P (Age = 41-55 | Y = Ineligible) = 1/8 

P (Marital Status = Married | Y = Eligible) = 8/12 
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P (Marital Status = Married | Y = Ineligible) = 5/8 

P (The Number of Dependants = 1-2 person | Y = Eligible) = 3/12 

P (The Number of Dependants = 1-2 person | Y = Ineligible) = 4/8 

P (Residence = Other (Renting) | Y = Eligible) = 1/12 

P (Residence = Other (Renting) | Y = Ineligible) = 3/8 

P (The Length of Residence => 2-5 Year | Y = Eligible) = 2/12 

P (The Length of Residence => 2-5 Year | Y = Ineligible) = 3/8 

P (The Length of Business => 5-10 Years | Y = Eligible) = 7/12 

P (The Length of Business => 5-10 years | Y = Ineligible) = 3/8 

P (The Kind of Business = Industrial Sector | Y = Eligible) = 4/12 

P (The Kind of Business = industrial sector | Y = Ineligible) = 3/8 

P (The Relationship with the Bank => 3 Years | Y = Eligible) = 5/12 

P (The Relationship with the Bank => 3 Years | Y = Ineligible) = 1/8 

P (The Credit History => 2 years | Y = Eligible) = 5/12 

P (The Credit History => 2 years | Y = Ineligible) = 1/8 

P (Mortgage = There is Mortgage, CEV> 100% | Y = Eligible) = 12/12 

P (Mortgage = There is Mortgage, CEV> 100% | Y = Ineligible) = 4/8 

 

c. Multiply all variable results Eligible and Ineligible. 

P (Age/Y) * P (Status Marital/Y) * P (The Number of Dependants/Y) * P (Residence/Y) * P (The 

Length of Residence/Y) * P (The Length of Residence/Y) * P (The Kind of Business/Y) * P (The 

Relationship with the Bank/Y) * P (The Credit History/Y) * P (Mortgage/Y) 

= 2/12 * 8/12 * 3/12 * 1/12 * 2/12 * 7/12 * 4/12 * 5/12 * 5/12 * 12/12 

= 0.166 * 0.666 * 0.25 * 0.083 * 0.166 * 0.583 * 0.333 * 0.416 * 0.416 * 1 

= 0.0000128 

P (Age/N) * P (Status Marital/N) * P (The Number of Dependants/) * P (Residence/N) * P (The 

Length of Residence/N) * P (The Length of Business/N) * P (The Kind of Business/N) * P (The 

Relationship with the Bank/N) * P (The Credit History/N) * P (Mortgage/N) 

= 1/8 * 5/8 * 4/8 * 3/8 * 3/8 * 3/8 * 3/8 * 1/8 * 1/8 * 4/8 

= 0.125 * 0.625 * 0.5 * 0.375 * 0.375 * 0.375 * 0.375 * 0.125 * 0.125 * 0.5 

= 0.0000061 

 

d. Compare the results of Eligible and Ineligible classes. 

From the results above, it appears that the highest probability value is in the (P | Y) class so that it 

can be concluded that the status of the prospective customer is classified as Eligible. 

3.2.  Test Result 

The following test results for credit approval to use applications that have been built (See Figure 1). 
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(a) (b) 

  

(c) (d) 

Figure 1. (a) The Result of Data Testing 50 Data (b) The Classification Result on Historical Data of Bank 

Credit Customers (50 Data) (c) The Result of Data Testing 500 Data (d) The Classification Result on 

Historical Data of Bank Credit Customers (500 Data). 

From figure 1, it can be observed that there is a compatibility of the predicted outcome that has been 

processed using data mining application, figure 1(a) with the factual data (historical data), figure 1(b). 

On the data testing, there are 38 out of 50 compatible data and 12 data are incompatible with factual 

data. The percentage of success is:  

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =  
38

50
𝑥100% = 76% 

 

Based on figure 1(c) and 1(d), there are 475 out of 500 compatible data and 25 data are incompatible. 

The percentage of success is:  

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =  
475

500
𝑥100% = 95% 
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It can be seen that this application is well performing in analyzing the feasibility of customers data 

who are eligible for loans, however, this application will work optimally when the data provided is 

relatively larger and more variable. This application can assist credit analyst in recommending customers 

who deserve personal loan which is decided by the decision maker in that bank (See Figure 2). 

       

(a) (b) 

Figure 2. (a) The Testing Process of 1 Data with “Ineligible” (Tidak Layak) Result (b) The Testing 

Process of 1 Data with “Eligible” (Layak) Result. 

In figure 2(a), the result obtained is Ineligible (Tidak Layak) because the multiplication result of the 

Eligible class is smaller than multiplication result of the Ineligible class. In figure 2(b), the result 

obtained is Eligible (Layak) because the multiplication result of the Eligible class is bigger than that of 

Ineligible class. The details of the calculations are described in the previous section. 

4.  Conclusions 

After doing the analysis, design, and testing, it can be concluded as follows: 

 Classification technique with NBC can be used to predict credit risk classes quickly. 

 If the data training to Nil, Naïve Bayes NBC cannot classify the record, so that the data predicted 

will be Nil or Ineligible. 

 From the results of the testing system, the success rate of data testing as many as 500 data is 

95%. Therefore, the applications using an NBC is considered helpful in the process of deciding 

giving a loan to new customers. 

 This study, besides the application, can build the classification of the bank customer’s data (who 

is eligible or ineligible), in the other hand by observing the result of eligibility classification, the 

bank can also determine which area will be the focus in the next marketing target, so it can 

minimize the operational cost. 
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