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Abstract. In this paper, research of optimization paramedérontinuous flow heart pump is
presented. The application of centrifugal pumpshasart assist devices imposes design
limitations on the geometry of the heart pump. Gemynand pump parameters affect the
performance and the hemocompatibility of the hparhp. The main quality assessment factor
for heart pump is the pump hemocompatibility itkg amount of mechanical damage caused
by a pump on blood cells. Besides stagnation zandsecirculation zones, wall shear stress is
parameter that is used to predict pump hemoconifiigtitsecond important factor is minimal
volume of heart pump with acceptable anatomictih{it Additional factors are high efficiency
and durability. The aim of the research is to psgpthe optimal design of bladeless centrifugal
heart pump. The dimensionless optimization paramseibthe heart pump design are derived
from Navier - Stokes equation. In conclusion, digsienless optimization parameters of
bladeless centrifugal continuous flow heart pungp@esented.

1. Introduction

In recent years, ventricular assist devices (VADY aotal artificial hearts (TAH) had become
unrivalled tools for replacing a failed heart. Hgaumps are typically used to bridge the time tarhe
transplantation, or to permanently replace the thearcase heart transplantation is impossible.
Through previous development and implementatiowai observed that pumps with continuous-flow
output cause less blood damage and have supedpenies than volumetric pumps with pulsating
output [1]-[2]. Furthermore, a centrifugal pumgsigoerior to axial flow device [3], [4].

Clinical data showed major complications with otfens (80%), thrombosis (19%) and
hemorrhagic events (14%). Most hemorrhagic eveatsiroed as a result of antithrombotic therapy.
This suggests that influence of heart pump on bilcan be significant, hence the hemocompatibility
should be priority when designing heart pump. Al of patients experienced a failure of the devic
[5]. Reliability, lifetime and bearings also havgrsficant impact on hemocompatibility [6]-[8].

Indicators of hemocompatibility i.e., the amountnaéchanical damage of blood cells, are: leukocyte
and erythrocyte damage (hemolysis) as well as urdgiatelet activation causing thrombus formation
(thrombosis) according to ISO 10993-4 [9], [9].

Numerical and experimental results show increasdolysis as a direct result of higher shear
stresses and longer residence times [4]. Hemolyassfound to increase linearly with exposure time a
exponentially with respect to shear stress [11f &kposure time is increased as a result of siagnat
and recirculation zones.

The wall shear stress (WSS) is the parameter #rabe used to predict thrombus formation [11],
[12]. Generally, thrombus formation occurs when WSIess than 0.4 Pa [13]-[15].
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Besides stagnation and recirculation zones, wabisistress is main parameter that is used to
predict pump hemocompatibility. Further researchsato improve pump design in order to achieve
greater hemocompatibility.

2. The design of bladeless centrifugal heart pump

The aim of the research is to propose the desigheobladeless centrifugal heart pump by adaptation
of the principles of Tesla pump (Figure 1 and Fég). The bladeless centrifugal heart pump creates
less shear stress, as the flow is created duehiesa and cohesive forces, without impact of blood
cells on rigid blade surfaces resulting in greagmocompatibility.

Figure 1. Geometrical model of bladele Figure 2. Cross section of bladele
centrifugal heart pump [16]. centrifugal heart pump [16].

Research of pump properties is based on applyinigotmachinery principles, fluid dynamics
theory and dimensional analysis. The influenceeasigh parameters on the pump hemocompatibility
is researched. Design parameters are pump hedtban@4p, Q), internal and external disc diameter

(R, R,), distance of discsh), and angular velocityc).

Essential criteria in heart pump development arapbead and flow. For the essential criteria it is
necessary to develop blood pump of acceptable hemoatibility. Second important factor is
minimal volume of heart pump with acceptable anataimfitting. Additional factors are high
efficiency and durability.

3. Optimization parameters

Research of pump properties is based on applyirmpmoachinery principles, fluid dynamics theory
and dimensional analysis on the differential voluofiehe fluid between two discs (Figure 3). The
dimensionless optimization parameters of the hpamp design are derived from the continuity
equation and the momentum equation (Navier - Stekestion).

Figure 3. The cylindrical differential volume (red) [16].
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3.1. Cartesian coordinate system
The cylindrical differential volume is fluid volumbetween two cylindrical discs. The distance of
discs ish, also fluid has constant density and dynamic \aggoThe cylindrical differential volume is

rectified (Figure 4). The coordinate ax& correspond to coordinate axig, coordinate axisz
correspond to coordinate axis, and coordinate axis correspond to coordinate axxs.

A
dx, =dz R
> , U=r=const.
p = const.
A= const.
> u=ar=const. dx, =d@

Figure 4. Cartesian coordinate system [17].

The fluid is assumed Newtonian and incompressibhe flow is stationary, planar and laminar
with fully developed velocity profile. The effect gravity is neglected [17], [18].

2EO, x3=const.,is 0, v;= 0,%5 0, f= 0. (1)
ot 0X, 0X,

The laminar flow is described with continuity eqoatand momentum equation [17], [18]. The
continuity equation:

— =0 (2)

The equation (1) applied on equation (2) resultg,ir C = konst. The momentum equation:

ov. ov. op 0%,

4oy — ="+ py— 1+ pf 3
Po ok T ax Haxoax O )
The equation (1) applied on equation (3) resutts in
2
i =1, @ = G_V; (4)
0X, 0X,
=2, P _g (5)
0%,
. op
=3, —= 6
ax, (6)
The equation (4) further develops in:
dp _ d*v
—— = i— =konst.
ol ()
——



KOD 2018 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 393 (2018) 012125 doi:10.1088/1757-899X/393/1/012125

After second derivation and implementation of bamdonditionsx, =0,v; =u and x, =h,v, =
equation (7) becomes:

)= Lo
v; (%,) 2ﬂdxltﬁx X, ] +u ®)

The equation (8) shows that velocity is a functief angular velocity and radius,
v, = f(u) = f(ar). Therefore, it is necessary to observe the aboeationed problem in the

cylindrical coordinate system.

3.2. Cylindrical coordinate system

It is impossible to exactly solve fluid flow in égtirical coordinate system (Figure 5), so the vigyoc

profile from the equation (8) is obtained. The &gilon of equation (9) on Navier-Stokes equation i
cylindrical coordinates is acceptable approximat[@8]. The velocity profile in the cylindrical

coordinate system:

Figure 5. The cylindrical coordinate system of the
differential volume [18].

vg(z)=i’u$Eﬁzz—hQ]+ax (9)

The wall shear stress (WSS) is the parameter trabe used to predict thrombus formation. The
wall shear stress in cylindrical coordinate system

. _'u(av“lav
oz 0z r 08

j (10)

The equation (10) is further solved:

1ldp
2z-h 11
THZ 2 dg( Z- ) ( )
The equation (11) can be simplified with next esgren:
A
dé 2rmr

Finally, the wall shear stress is shown with nexression:
Ap
=——(2z-h 13
9z 4r7_[_( ) ( )

The wall shear stress have maximum and minimumtgyam the surface of the discg €0, z=h).
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Aph
- =% 14
(Tﬁl)mm/max * Ar T ( )

The other important factor is pump flow. The puntgwf in cylindrical coordinate system is
defined with:

R, h
Q=JJV€ [ilz Coir (15)
R O
After solving double integral in equation (15), puffow is derived:
1 4p( R R | R, _,
=——| ——|h| = |+ —(R; - 16
Q Zﬂzﬂ[ Gj ”[RJ o (R -R) (16)

3.3. The dimensionless optimization parameters
The pump flow equation (16) can further be reareand 9]. The second part is divided wili, and

2
then thewhole equation can be multiplied wit—@%, resulting in:

Q _ -L4ph Dn[ﬁJ+[ii—1J (17)
R " 12m pare (R )R

The Reynolds number is:

Re= PR h (18)
U
The Reynolds number formula is implemented in dqodtl7):
- 2 2
0 Q - 1APH p B[Ry (19)
ahR? 1277 purR; R) (R

The equation (19) can be further rearranged in déoaless form [9]:
-1

2D7Q=ETD7DEReDIn(/7R)+(/7§—]) (20)
In equation (20), dimensionless optimization paranseare:
__Q
° R &
Aph?
1, = 22
m, :% (23)

In the turbomachinery theory it is normal that dirsienless parameter of pressure is a function of
other dimensionless parameters, the equation $XQ)ther rearranged in following manner:
i -1)- 21,

n, :127'[E(
Reln(/7)

(24)
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Furthermore, the equation (13) that shows finainforf the wall shear stress can also be displayed
in dimensionless form:

= T, Urm (25)
Ap[{2z-h)
4. Conclusion
The dimensionless optimization parameters of b&sfetentrifugal continuous flow heart pump are
presented:
= dimensionless pump flow parameter:

, = wr?Rf (26)

= dimensionless pump head parameter:

Aph?
= 27
= dimensionless radius (geometry) parameter:
o= (28)
R
= dimensionless wall shear stress parameter:
.= THZ—W (29)
Ap[{2z-h)

The essential criteria are pump head and flahp,(Q) which are defined with exact values.
Furthermore, the value range of the wall sheasstnéth acceptable hemocompatibility is also define
The rest of design parameters: internal and extelisa diameter R, R,), distance of discsh),
and angular velocity @) have to be determined. The unknown values ofgdegarameters (
R, R,,h,w) have to be determined in a way to fulfil constsabf the dimensionless optimization

parameters with respect to minimal volume of tharhpump.
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