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Abstract. The article deals with a description of a matheaaadtilgorithm, programmed in the
MATLAB environment of the company MathWorks. Th@alithm serves a calculation of an
optimal axial preload of rolling bearings. So thhg life of a bearing pair, arranged into “X”
or “O” arrangement, is maximized according to aegiMoad. Hence angular contact ball
bearings and tapered rolling bearings are the subjatter of the article. Moreover, methods,
that were used in the optimizing code, such asz4edontact of two bodies and Stribeck’s
load-distribution on rolling elements, are desalibie the article too. The finding is the
dependency between total axial preload and life loéaring pair.

1. Introduction

When a rolling bearing is subjected to a radiatling, rolling elements are not equally loaded. Badi
load-distribution on elements of ball bearings wagestigated by Stribeck. He stated value of
Stribeck’'s number to 5.0. It expresses, that thst meaded ball element is loaded 5 times the aeerag
loaded ball in a ball bearing with zero internardetral clearance. Palmgren made the investigation
on roller bearings and suggested to use Stribeckier with the same value even for roller bearings
[1]. Later, Lundberg and Palmgren stated equationfatigue life of radially loaded rolling bearisg
Those relations were simplified relative to the getry of bearings and incorporated in ISO standard
[2, 3]. Harris and Kotzalas attested fatigue lifealling bearings can be increased by an apprtgria
internal clearance [1]. Axial preload of angulantaxt ball bearings and tapered bearings relatéseto
clearance [4]. The article describes optimizingdthm created in Matlab that serves the purpose of
optimal axial preload calculation with maximal begr fatigue life. Consequently, life model of
Lundberg and Palmgren is compared to 1ISO281:2007.

2. Stribeck’s radial load-distribution

Stribeck examined rolling element loading variatidmadial loaded ball bearings to find out frictad
forces [5]. When a rolling bearing with positivaemal diametral clearane& is loaded radially, the
load zone will be less than 180°. Figure 1 expldins internal radial clearand®, and other
geometrical bearing parameters. If a bearing wétto znternal clearance is oriented according to the
Figure 2 and the radial lo& acts on the inner ring than the force is distelubn the rolling element
labelled 1 and on carrying pairs of rolling elements. The numbecaifrying pairsh is given by:

=1 1)
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Figure 1. Ball bearing with interni Figure 2. Ball bearingwith zero internal diametr
diametral clearanc@; [3]. clearance subjected to the radial |éadl].

wherez is the number of rolling elements ands rounded down to a whole number. From static
equilibrium of a radially loaded ball bearing, ttedowing equation for a load-distribution on raolg
elements results [1].

F=Q1 + 2Q, cos(B) + 2Q;3 cos(2B) + ... + 2P, cos(nf) (2)

Q4,0,,05, ...Q,+1 are normal loads on individual rolling elementbeTanglef between 2 nearest
rolling elements is shown in the Figure 2 and iegiby the equation:

_2m
B=~— 3)
Between load); and load€),,.,, that act on the other rolling elements, the follmywelation exists [1]:
Q; = Q1{cos[( — DB} (4)

wherej = 2,3,...,n + 1, and the value of exponepnt= 10/9 for a line contact and for a point contact
y = 3/2. Hence, the equation (2) can be adjusted to ttme: fo

F=Q1{1 + 2[cos(B)I"** + 2[cos(2B)]"*! + ... + 2[cos(mB)]"™'} = Q16 = QuaxG  (5)

Because the most heavily loaded rolling elemeiihéselement 1 the loading acting on it can be
denoted byQ; = Q.- The variablas is equal to the expression between the curly sta8&ibeck
discovered that for radially loaded ball bearingghwzero internal clearanc€,, the division of
number of ballz and value ofz is close to the constamtG=4.37 [1]. However, this number changes
according to internal diametral clearance, defowwnatof raceways and loading. Therefore, he
suggested to round the Stribeck’s number to thee&l= 5.0. Afterwards Palmgren stated constant
z/G=4.08 for roller bearings, but he suggested totlisaralue 5.0 for either ball or roller bearings [1
The relation for the calculation of maximally loadelement by Stribeck’s number can be expressed

from the equation (5).
=i _ Sth

Qmax = G (6)

V4

Later Harris and Kotzalas applied an iterative rodtfor the calculation of the maximal loading
Qmax by load-distribution integrgl.(¢). The integral works with the value of the load-eqgrarameter
that is referred to as a load distribution faetowherebys < 0.5 means that the zone of contact is not
more than 180°. In the case> 0.5 the contact zone is more than 180°. And the mdbetween the
load-distribution integral and Stribeck’s numbeassfollows:

Se = 1/)x(e) (7)

The dependency of Stribeck’s number and the intediemetral clearance is described in the
reference [1]. The load distribution factors given by:
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where G, is internal clearance anti is the total raceway displacement. Their relatigkation is
shown in the Figure 3 and is defined as:

01 = Omax + Gt/2 9)

Generally, the relation between the loading anddésection in the contact of a rolling element
and its raceway is expressed by the equation:

Q = K§" (10)

Q denotes loadingk is the stiffness of the system afdis the deflection in a contact. The total
deflection between both raceways under the loas@parated by rolling element is given by the sum
of both deflections of the inner and the outer vaye[5].

6p = 6; + 6, (11)
The total stiffness of this system is given by: [5]

1 1Y
Ky = [(Ki)” + (Ki)y] (12)

And the consequential normal load is:

Qn = Kn61)1/ (13)
Hence, the maximal loa@,,x can be found by combining equations (9) and (13).
Qmax = Kn (61 — G/2)Y (14)

Then the relation foby is acquired by substituting equations (7) and (b4)he equation (6).
Parametebdt is an important constituent of mentioned iterato@thod for calculating values of load
distribution factore.

1

) (15)

O plane 2

body I ‘
il

body II

]

plane l\i;—)

o,
Figure 3. Radially loaded rolling Figure 4. Contact of two bodies pressed
bearing with internal clearandg, by normal loadQ, to each other and
and elastic deformatiof),, 5 [1]. curvature radii lying in main planes [7].

3. Surface and subsurface stress

In the contact of rolling elements and a racewag lmfaded bearing, the elastic deformation is mitese
Miniature contact surfaces occur and distributelilog to individual rolling elements. Because of the
size of the surfaces, implicated contact stressladively high. Hertzian theory of elastic defotina
provides relations for calculation of contact streend deformations. It is based up on these
assumptions:
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= The material is homogeneous and isotropic.
= Contact surface is continuous and non-conformirgythe area of contact is much smaller than
the characteristic radius of the body. This suriacibmitted to normal load only, not to shear.

= The elastic limit of the material is not exceeded.
Even though rolling bearings do not meet the assiomp entirely, the theory applied to this field
gives adequate accuracy. And many publicationsnafthat calculated values of deformation and
contact area dimensions correspond to experimgratellieved measurements.

In Hertzian theory, when two bodies with curvediates are pressed to each other, characteristic
radiusp is defined as the reciprocal of the curvatureusdi4]:

p=1/r (16)

Each of both bodies is characterized by curvataremain planes, as in the Figure 4, which are
orthogonal to each other and in which are locatesimal and minimal curvatures. If the curvature
centre is situated inside the badys positive. In opposite situatignis negative.

In the case of rolling bearings with point conjétie contact area commonly has an elliptical
shape. Contact ellipse is defined by the lengtmabr and minor axes:

2a =24 3\]%(1 — m2) (%) (17)

2b = 2v 3\/%(1 — m2) (%) (18)

where2a is the length of the major axigb is the length of the minor axig, is Young's modulusn

is Poisson's ratioQ, is normal load,u andv are Hertz's coefficients, that characterized stres
distribution in the contact area. In the case ¢ lcontact, the width of the contact area is giwéh
sufficient accuracy by:

2b—2\/ (1- 2)( 89n ) (19)

Tlwe X P

Whereby the sum of curvature is calculated jusihfieme main plane. The maximal contact stress
po for point contact is located in the centre of tbatact area and is defined as:

Po = v \/[(1 m2) 3 Qn (20)

For line contact, the maximal contact strggs<an be calculated by the following equation, which
is applicable for roller and tapered bearings [8].

Po = \/ ((1—22)) (: ;szi) (21)

Figure 5. Distribution of surface stress Figure 6. Distribution of surface stress
elliptical contact area — point contact [7]. rectangular contact area — line contact [7].
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Stress analysis according to Hertz only coversdaspn of surface stress caused by concentrated
load normal to the surface. But experimental figdiprove that fatigue failure of rolling bearings
material is mediated mainly by subsurface stre$s Therefore, determination of the subsurface
stresses is important. The following basic poimsutt from the subsurface stress analysis of point
contact according to reference [7]:

= Maximal normal stress,,,, is oriented in the direction of acting load.

= This maximal normal stregs, . is equal to maximal contact stregs

= Maximal shear stress, .y is located in the symmetry plane y-z and the vaduspproximately

Tmax = 0.3 Omax-
= Orthogonal shear stresg, comprise of two same maximal values, but one effitlis positive
and the other negative. The value is around~ +0.250,,,x and they are in depth
approximatelyz.,, ~ 0.5b under the surface of contact and in the distange fsymmetry
plane approximately =~ 0.9b.
In accordance with reference [7], fatigue phenomedioectly refers to the amplitude of stress. ISO
and AFBMA suggest to use maximal orthogonal sheasst,, as the fatigue contact criterion.

4. Lundberg and Palmgren model

The model is the basic theoretical formulationadfimg bearings fatigue life. Lundberg and Palmgren
adapted Weibull statistical strength theory. Thepmsed that the depth in which is located the
critical shear stress influences a crack initiateond fatigue life. Orthogonal shear stregs was
designated as critical shear stress. They staeedelation for bearing rings subjected to the cycli
load, which determines the probabiliiyhatN cycles will not occur failure of the raceway [8].

nt=a(2m) (22)

Z1yz h

Wheret,, is maximal orthogonal shear stress,, is corresponding depth in which this stress acts.

Parametergl, ¢ andh are material characteristics obtained experimgntBarametee is Weibull
slope. Stressed volume of mateiials defined as [3]:

V = alyzy, (23)
V= LwelLZ‘tyz (24)

If considering point contact; is length of the semi-major axis of contact ebipk the case of line
contactL,,. is effective length of roller element. Aiddis the length of the raceway.

I, = n(Dpw + Dy COS a) (25)

The equation is universal for calculation of racevengthl;, of either bearing rings (inner and
outer).Dp,, denotes pitch diameter of rolling elements Apd is diameter of rolling element.

q — ouler race
R h

Figure 7. Contact anglex of angular contact ball bearing [3].

The number of revolution8 over which will not occur defect on the racewaygcontact of rolling
element and raceway, with 90% probability is expeesfrom the equation (22).
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1
zryzhlnﬁ e
N = Lo, = Lo, = | ——=~ (26)

Aty V

Whereas a bearing is a system compounded of segenaponents, and each of them has a

different life, the total basic rating life is deéd as:
1 1 1
=—+

e T je e
Lio Lio;  Liog

(27)

5.1S0O 281
Following relations was derived by Lundberg andniRgken too and was incorporated into the
standard 1SO281:2007. It is a standardized guidedtzulation of bearing life. The next equationswa
obtained by substituting far,,, z.,,, andV in terms of the bearing dimensions and contad ioa
equation (22) [8].
c\P
Lo = (;) (28)

WherelL,, is basic rating life in million revolutiong;, is basic dynamic radial or axial load rati®y,
is dynamic equivalent load. Exponent= 3 for point contact ang = 10/3 for modified line contact.
Because the paper deals only with a fraction difigpbearings, just necessary equations are megdion

Angular contact ball bearings and tapered bearargsnormally subjected to radial and axial load
simultaneously. In this situation, the dynamic eglént radial load,. has to be determined [6]:

P, = X, +YF, (29)

WhereF, andF, are acting radial and axial load respectivélyis dynamic radial load factoy, is
dynamic axial load factor, and both of them areestdn tables of the standard. Basic dynamic radial
load ratingC, of angular contact ball bearings is defined as [6]

2
C. = 1.3f.(icosa)?7z3D}?® forD,, < 25.4 (30)

2
C. = 4.7411f.(icosa)®’z3D}* forD,, > 25.4 (31)

and tapered bearings [6]:
29

7 3
Cr = 1.1f.(i LyyeCOS @)924D\y27 (32)
Where coefficientf is tabular value and is dependent on bearing gegnthe accuracy of its
components and material.is nominal contact anglé humber of rowsz number of rolling elements,
D,, nominal diameter of balh,,. andL,,. are the calculating roller diameter and its effectength.

6. Optimization algorithm

The optimization problem is to find the optimalaioéxial preload of a pair of angular contact begsi

or tapered bearings oriented into X or O arrangemfar the purpose of rolling system life
maximization. Lundberg and Palmgren fatigue lifedelois stated as optimization function. And
design variable is axial total preload, on whiclpel®ls internal diametral clearance. The inputs of
algorithm involve required bearing geometrical paeters, material constants and duty cycles.

The algorithm was developed and encoded in theamaent Matlab of company MathWorks. In
the Figure 8, the shown diagram schematically ssres the sequence of individual algorithm steps.
Running this code, the program reads the entry ffata the external files, calculates additional
parameters and creates the total preload rang® o6 be explored. The range is divided by the
increment intan portions. In the diagram, the outer rectangldénta cycle that is repeatedtimes,
successively for eadf); (i = 1,2,3,...,m).

In the first step, the distribution of the axiaélmadd,; on bearings A and B is calculated using the
axial stiffness of the individual bearings. Thenc@ding to the equation (10), the respective loads
Fs,; caused by these preloads are determined. Ine¢pensimber 2, a range of axial loads according to
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the duty cycles and the forces of the preloadeated for each bearing, considering both directains
the axial loads.

Then the algorithm enters into another nestedecytiich repeats itselftimes. Where represents
the number of duty cycles. In the diagram, it ipided as an inner rectangle. In step 2.1., theahct
axial loadF,,;; and the actual axial deflecti@y,;; for each bearing are determin@gd= 1,2,3, ..., ).

If the axial load ofk duty cycleF,, = 0, only the forces from the initial preloat; act on the
bearings in this direction. IF,, > 0 or F,;, < 0 then the values of the actual axial foréggs;, are
obtained by interpolation from the load range epstumber 2, and their respective deflections,

are calculated.

In the next step, the actual axial bearing defbecdi,,;;, is transformed by the following equation
for calculating the internal diametrical clearaiifg of each bearing A and B:

I Loading of input parameters |

I Calculation of other necessary parameters |

| Creation of total axial preload o, range |

1. Calculation of distribution of total axial preload 6,; on EEyels
bearings A and B and corresponding axial loads
2. Determination of axial load range
k-cycle

X
2.1. Calculation of actual axial load F,,;; and actual axial deflection d,,; for each bearing |

|

:

2.2. Internal diametral clearance calculation G, for bearings A and B. |

I

2.3. Calculation of the maximal normal load Q,,,; acting on the most loaded rolling element
for bearings A and B

|

¥

2.4. Calculation of fatigue life L,o; accordnig to Lundberg and Palmgren model for each bearing

\ )

3. Calculation of total fatigue life Z,o, for bearings A and B

Optimal total axial preload Gyep

Figure 8. Optimization algorithm diagram.
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Grik = —Saaix tana (33)

In step 2.3. the calculation of load on the moatked rolling element is based on Stribeck's theory
To obtain the Stribeck number, it uses the loathdigion integral/.(¢). For each calculation of
Jr(€)., it is necessary to use the separate numerictatiedescribed in the reference (Zaretsky).
Generally, this method starts with an estimateat|distribution factog, then the functional value of
J-(¢) is obtained and is substituted, along withvalue, in the equation (2). The obtained values ar
used in the equation (3) to calculate a reewalue. This repeats until the accuracy conditiothe
maximum number of iterations is satisfied. The auip /., (gjx) which is used to calculate the most
loaded rolling element according to the relatiof)(2vhere the transformation to the normal load is
applied:

Fri
ZJrik(€ik) cos a (34)

Step 2.4. consists of calculations from the seatibthe surface and subsurface stress theory. The
maximum contact stress and contact area paranm@tersalculated according to the equations (16 -
21) for the contact of the element with the outadt Bner rolling raceways for each bearing. Then, f
each contact, the fatigue lifg o, andLq, ;. are calculated according to the relation (26). Amel
total life L,4;, Of bearings A and B according to equation (27)sTiested cycle terminates whier=
L.

In the step number 3, the total fatigue lifg;, of both bearings for each load stage is conveded
L1p;. It corresponds to the life of these bearingstlfiar entire duty conditions with the given axial
preloads,;. From this step, the algorithm returns to stemd the cycle ends when= m. The output
of this cycle is a matrix with the dimensioms— by — 3, where the first column contaidg values,
the second bearing litg y, of the bearing A and the last column are the \slygs of the bearing B.

The final step of the whole algorithm is to firftetmaximum bearing life of bearings A and B.
From these two values, the minimum value of lifesésected, and the corresponding axial preload is
then the optimal preloaziij10pt of the whole rolling construction system.

Qma)dk =

7. Comparison of L-P model and 1SO281

A particular rolling construction system was sedelcivhere tapered roller bearings of type 33209 and
33207 were mounted in X arrangement. This systerd Hefined certain operating modes.
Subsequently, the calculation was performed ugiagabove-mentioned algorithm, which uses the L-

|—Ljoa L-P—— —Lygp L-P - Ly, 1S0281

[=2]
Q
[=1

g

b5

[=]

=1
T

[:8]
[=]
[=1
T
-

=
=]
T

Life LIO (million revolutions)
(9]
3
T

0 0005  0.01 0015 002 0025 003 0035  0.04 0045 005
Total axial preload 6, (mm)

Figure 9. Dependence of lifé;, and total axial preload, of two bearings
mounted in X arrangement, obtained by two differemthods, namely
Lundberg and Palmgren method and 1ISO281.
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P model to obtairLos/p bearing life. From the calculated values, the dédpece of bearing life
Lioa/s and axial preload, was established for the bearing A and B. Thenstige rolling system
was calculated according to the ISO 281 standardl,tlhe same dependence was obtained from the
calculated values. This dependence and comparistire dwo procedures are shown in the Figure 9.
As can be seen from the line graph, according ¢aL{lg,, g curve of ISO:281, an optimal preload
cannot be determined, as its trend is approximdtehzontal and then begins to decrease. It has no
response to axial preload change. However, foresuobtained using the L-P model, this value can be
determined. And in this particular case, the optitoel axial prelo;;mﬂaolDt = 0.028mm.

8. Conclusion

The paper summarizes the basic theory that wasssa@geto create the optimization algorithm
programmed in the Matlab environment. This algoniteearch for an optimal axial preload of a
rolling bearings system, that consists of two aagabntact ball bearings or tapered bearings mdunte
in X or O arrangement, to maximize bearing life.eThundberg and Palmgren model is used to
evaluate rolling bearing life. This model was basadthe Stribeck's radial load-distribution on the
rolling elements and the theory of surface and wti@ise stress. At the end of the paper are destribe
the individual steps of the algorithm. Also, thetmalar example is demonstrated, where the bearing
life was calculated by Lundberg and Palmgren metratithe method presented in 1ISO281:2007. The
dependence on bearing life and axial bearing pdeleas depicted graphically. And from the data in
this graph, it was estimated that it is not posstbldetermine the optimal axial bearing preloadgs
the 1SO281 standardized procedure. On the othat, hesing the Lundberg and Palmgren model, it is
obvious that the axial bearing preload influencearimg fatigue life and can be determined the
optimal preload value. Therefore, this model wadscted in the optimization algorithm.
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