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Abstract. This paper introduces the theory of the mass-issmmibsystems of metamaterials
by a 2-Degree-Of-Freedom vibration model with lineharacteristic springs and dampers,
periodic excitation. The theory is described byaalitional method, by rotating vectors, using

D’Alambert’s principle. Formerly this method wasedsonly for 1-Degree-Of-Freedom and

now it has been developed for 2-Degree-Of-Freed®ehationship between the phase shift and
the amplitudes of the two masses’ motion has besterahined. Both depend on only the

Lehr's damping ratio and the frequency rateGA = A,/A, factor has been introduced and

called amplitude rate. The mass-in-mass subsystesnbieen described by the conducted
results, so the motion and the forces are morerappa

1. Introduction

The research of acoustic metamaterials is in pesgr&he mass-in-mass subsystem had been
introduced during the theoretic foundation, thanhgists of twom,;, m, masses, one linear
characteristic spring and the periodic excitiigdorce loading then, mass [1-4]. This model provides
the base of the effective mass, without damping. d&e approach the real material’'s model with
adding ak, viscous damper,,,, = —kx) to the system that influence significantly thegion of

the subsystem. With the aim of describing and wtdaeding this, the most apparent way to use the
rotating vector method [5]. First we start from th®egree-Of-Freedom as it is well presented in the
specified literature, than we extend it for 2-Degfef-Freedom. Through this it is easier to describe
and understand the damped mass-in-mass subsydtanmustic materials.

2. Model of 1-Degree-Of-Freedom (1-DOF) vibration withdamping and excitation

The model of the 1-DOF, viscously damped, peridbicexcited vibration (Figure 1.) is consists of
one mass, one viscous damping (damping force igoptional to velocity) and one spring with linear
characteristicK,ring = —sx) [6, 7]. The excitation is described by sin(t) étion.

u=0
Figure 1. Model of 1-Degree-Of-Freedom, periodically excjteidcously damped vibration.
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The motion equation of the model is based on theciple of linear momentum:

mi = F, sin(a)g t) — kx — sx Q)
with some modification:
mX + kx + sx = F, sin(wgt) (2)

The equation of motion is a constant coefficiemeadr inhomogeneous differential equation which
solution consists of the generat,( free vibration) and the particular,( excited vibration) solution

(x = xp + xp). The solution of the homogenous equatign= Ce~Ptsin(6t + 1) terminates fully by
time because of damping, so we can focus only empénticular part [5-6].

As each part of the equation of motion rotates by samew, angular velocity, change
harmonically, the equation can be represented taying vectorse is the phase shift between exciting
force and excited motion, and it is caused by dampiThe displacement, velocity, acceleration
vectors of a harmonic vibration is shown on Fig2ir& he vectors of forces appearing in equation (1)
are visible on Figure 3. The resultant force isrespnted by dashed line, showing the vectors in
equilibrium position according to the principle@fAlambert [5]:

y yA

V V
q Fo d

velocity ® w

displacement mAwg? ¢
X T x
kAw
. sA
a acceleration a

Figure 2. Displacement, velocity, acceleration. Figure 3. Equilibrium of force vectors.

Thed andv directional equilibrium force vector equationsthg principle of linear momentum [5]:

d: 0= Fycosp + mAw; — sA (3)
v: 0= Fysing — kAw, (4)
With some rearrangement:
d: Fycosp = A(s — mw?) (5)
v: Fosing = kAwg (6)

Equation (6) dividing by (5) the phase shift vaiste

Fosing kAu)g _ kwg

9¢ = Fycosqp A(s—-mw3) - s—mw? ()

Bringing outm mass, introducingg = % specific damping factor ano? = %:
L mpey a0y _ 2fwy 8
tgp = m(%—(uf)) - %—(ug - wz—wf] ( )

Dividing both the denominator and the numerators8y introducingD = kk

krit

= % damping ratio
wherek,, = 2mw is the critical damping factor:
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Z—f)a;‘)g ZD(‘;‘? 9
tgy = w2 03wl 9)
2wz 1Tez

So the phase shift between the exciting force hadrtotion is [5]:

s (10)
= arc
R
Squaring and adding together equation (5) and (6):
FZ(cos?g + sin?¢) = A? [(s — mwﬁ)z + (ka)g)Z] (11)
A= fo (12)
\/(s—mwé)z+(kwg)z

Expanding the denominator and the numeratorljpyr, entering thef = k/2m, w? =s/m
relationships and the,;, = F,/s static extension:

oo Xgrw?
A= = L (13)
JGmop) +Eon)’  Jl0-0p) (2,
Expanding byw?/w?, entering thd = k/ky, = k/2mw = p/w damping ratio:

A= Xst — Xst (14)
wz\? wg\2 w2\? wg\2
o) ey [(1-28) o
Based on that the dimensionlesér,; scaling factor [5]:
A 1

P — (15)
[0 oy

3. Model of 2-Degree-Of-Freedom (2-DOF), damped and eited vibration

The model of the 2-DOF, viscously damped, peridbjicexcited vibration consists of two masses
(m,m,), two viscous dampersK(,k,, where Fyzmping = —kx) and two linear characteristic
springs fspring = —sx) as the Figure 4. shows [6].

Figure 4. 2-DOF damped and excited vibration model.

The equation of motions written for the two masses:
5&1 + klxl + kZ(jcl - XZ) + S1X1 + Sz(xl - xZ) = Fosin((l)gt) (16)

Xy + ky(g — %1) +52(x2 — %) =0 (17)
Dissolving the brackets:

My Xy + kyXq + kyXy — kyXy + S1x1 + Spx1 — Spx, = Fysin(wyt) (18)
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mzxz + kz?&'z - kle + Szxz - Sle = 0 (19)

Equation (19) can be seen as equilibrium of fiveds according to D’Alambert, after changing
the senses. The equation (19) with opposite séasepresented on Figure 5. by rotating vectorg Th
exciting force does not move the, mass directly, it is visible only for explanation.

Y YA
Vv A
1 1
(OF] dl FR dl
P3
s_A P2 (O0F]
kA w 2
2 1 g
= >
\ X \ X
Figure 5. Forces on then, mass. Figure 6.m, mass with resultant moving force.

Thek,A;wg4, s,A; force vectors are substituted by dieresultant force (Figure 6.), and now the
problem is originate in the 1-DOF vibration. Basad that them,, k,, s, vibrating system has a
@, + @3 phase shift to thé, resultant force. The following relationships arged in the further
reductionss, = wim,, D, = k,/2myw, = B,/w,. Thep; angle between thg; resultant force and
thed, axis, and the amplitude 6§:
szl(l)g
S24q

2 2
|Frl = \/(kZAlwg) + (5241)% = Ag/(kzwg) + 53 (21)

From the equation (21) bringing syt and substitutind,:

o N2 [0\ 2 w2
|Fo| = Alsz\/4 (Zm;wz) (w_Z) +1=A4s, /4022 (w_Z) +1 (22)
So the static extension of:
F wg\2
Xop = 2 = Ay [4D2 (w_Z) +1 (23)

It is visible that only the amplitude &f; resultant force depends on the motiomqf, its angle
with d; axis is independent ofi,’s displacement. The, phase shift between the motions of the two
masses:

2 %9 — gr¢ tg2D, =4 (20)

2m2 Wy Wy

@3 =arctg =arctg?

g
w32

2D, -4 2D, -2 wg
@, =arctyg wgzz — @3 =arctyg wgzz —arctg2D, . (24)
1-(39) 1-(G2

Using thearc tg(x) —arc tg(y) = arc tg% trigonometrical relationship, the phase shift of
m, tom, is (passing over the simplification):

1 @2 29
P, = arc tg —=2g——— = arc tg — >~ (25)

2% wg w2 7p, 202
1+ 2.2D,—2 ZDz(w—‘Z) 2
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Using equation (14) and (23) the amplitude of thh@ched mass’ displacement:

wgy?2
A - - _ 4 [403(32) +1 4 (ZDZZ—‘Z)2+1

wg : wg)? wg ’ wg)? ' <1—w—§>2+(2D w—g)z
<1—w—%> +(2D2w—2) (1—w—%) +(202w—2) 2 25,

If the m; mass stands still4¢ = 0 m), the m, mass cannot move either, in contrast with the
undamped vibration where usiag = w, excitation, setting,, m, s,, m, values properlyn; mass
could be stopped by moving,. From equation (26) the rate of amplitudes ofttihe masses (named
amplitude rate(s,;) can be calculated:

(26)

w2
A (20,22)" +1
Gzl = A—j = wz 7 2 " 2 (27)
(1—0)—‘2) +(202w—§)
TheA,/x:, scaling factor based on (15):
A; 1

(28)

Xst2 - wZ\? 2
_Y9 “g
j(1 w2> +(2D2w2)

2

Before the representation of rotating vectorsgfs motion, the equation (19) has to be rearranged
and substituted to (18):

mzjéz = kzjcl - kzkz + SoXq1 — SpXp (29)
mljél + klxl + S1X1 + mzjéz = Fosin((l)gt) (30)

Rearranging equation (29) according to D’Alambert:

O = Fosin((l)gt) - mljél - li'Cl — S1X1 — mzjéz (31)

The equation (30) is represented again by rotatiectors (Figure 7.). The exciting force is
responsible not only for the excitationmaf, k;, s; system, but for the accelerationmf, as well.
@, is the phase shift between tReand the displacement of;, ¢, is still the phase shift between the
displacements ah; andm,. F,, andm,%,,,4, Vectors have to be factoreddg, v, directions.

YA
v F(t) ' X,
1

mlAlng d
Fo [0) ' |:—:| s
s = ‘
X m,
klAlwg
51A1 m,
Figure 7. Forces ofn; mass. Figure 8. Mass-in-mass damped subsystem.

Thed; andv, directional equilibrium of forces can be descrilaedording to D’Alambert, thaf,
has to be brought out:

dy: $141 = Fycos@q + myA w5 + myA,wicosg; (32)

Focospy = 5141 —myAjwf — myA,wicose, (33)
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vz Fosingy = kiAjwg + myAywlsing, (34)

Substitutingd, = G,,A; based on (27), than bringing oat:

Focosg, = 5141 —myA 05 — myGr1Aiwicos@; (35)
Fosing; = kiAywg + myGyAjw}sing, (36)
Focospy = A1 (51 — mywi — myGyiwfcosp,) (37)
Fosingy = Ay (kywg + myGyiw5sing,) (38)

Using (36) and (37) the phase shift between thé@iegdorce and the displacement:af, and the

maximum displacement o, :
Fysing, k1wg+m,Grw3sing,

tge, = = (39)

Focospy 51— 05-m;Gp1 w5059,

F¢(cos?@q + sin®@,) = A2[(s1 — muwi — MyGaywicosg,y)? + (kywy + myGaywising;)?] (40)

Fo

A (42)

1
2 2 2i
\/(sl My W§—M3G21W5COSP2)2+(K1wg+M;Gr1 wESing,)?

4. Damped mass-in-mass subsystem
The model of metamaterial’s mass-in-mass subsysitigéimviscous damping is represented by Figure
8. The exciting force loads directly on thg mass, while the connection between the two masses’
displacements is ensured by #hespring andc, damper. The relation between the displacemergs, th
phase shift and the amplitude rate can be desctilgethe equation (25) and (27) as well. Both
variables depend on only tiflg damping ratio and the,/w, frequency rate. The diagram of the
phase shift is shown on Figure 9.

It is visible that the highest phase shift can tisieved without damping. In that case, and when the
exciting frequency is higher than thg natural frequency, the two masses vibrate in oppgbase.
As the damping increases, the maximum value oplfase shift decreases and slightly moves right. If
damping is higher than the critical damping, theximam phase shift does not exceed.98s the
exciting frequency increases, the phase shift agegealso to 90

The G,, = A,/A; amplitude rate is represented on Figure 10. Thaamnped vibration has the
maximum value either, excited at thg natural angular frequency. As the damping increatie
difference between the two amplitudes decreaseésthenmaximum values moves left.

®2[°] A2/A1
180 6
150 5

\ e D2=0
120 —— ——D2=0,1 4 b2=0
%0 | ——D2=0,25 ——D2=01
3 ——D2=0,25
D2=0,5 / ’

. A D2=0,5

60 D2=1 2 \\ ’
D2=1
30 LT
1 7 L
— T |
I o R S A e !

Cooo00O000OQ0O00O0O00OQ0OO0OCOQOg W/w2 0 || [ rre—"

QNMONOMONENONHonanononsng wg/w2

COTANNMMTTHNCONNO RGNS Q] 0,00,204060,81,01214161820222426283,032

. w . . w A .
g gy _ 22
Figure 9.¢,(D2,—*) phase shift. Figure 10.G1 (D, —) = ™ amplitude rate.
2 w2 1

5. Conclusion
For the analysis of the model of metamaterial’'s snasmass subsystem the rotating vector method
has been used. It is visible that stoppimgmass can be achieved onlykat= 0 Ns/m damping. As
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the damping appears between the two massed,; tke) m goal cannot be achieved even exciting at
the w, natural angular frequency. It is obvious, the dimmps smaller, the bigger is the difference
between the two masses, viewing both the phast astif the amplitude rate. However the highest
vibration absorption will be earned at closed ®ah natural angular frequency as well.
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