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Abstract. This paper introduces the theory of the mass-in-mass subsystems of metamaterials 
by a 2-Degree-Of-Freedom vibration model with linear characteristic springs and dampers, 
periodic excitation. The theory is described by a traditional method, by rotating vectors, using 
D’Alambert’s principle. Formerly this method was used only for 1-Degree-Of-Freedom and 
now it has been developed for 2-Degree-Of-Freedom. Relationship between the phase shift and 
the amplitudes of the two masses’ motion has been determined. Both depend on only the 
Lehr’s damping ratio and the frequency rate. A ��� = �� ��⁄  factor has been introduced and 
called amplitude rate. The mass-in-mass subsystem has been described by the conducted 
results, so the motion and the forces are more apparent. 

1. Introduction 
The research of acoustic metamaterials is in progress. The mass-in-mass subsystem had been 
introduced during the theoretic foundation, that consists of two ��, �� masses, one linear 
characteristic spring and the periodic exciting �	 force loading the �� mass [1-4]. This model provides 
the base of the effective mass, without damping. We can approach the real material’s model with 
adding a 
� viscous damper (���� = −
��) to the system that influence significantly the operation of 
the subsystem. With the aim of describing and understanding this, the most apparent way to use the 
rotating vector method [5]. First we start from the 1-Degree-Of-Freedom as it is well presented in the 
specified literature, than we extend it for 2-Degree-Of-Freedom. Through this it is easier to describe 
and understand the damped mass-in-mass subsystems of acoustic materials. 

2. Model of 1-Degree-Of-Freedom (1-DOF) vibration with damping and excitation 
The model of the 1-DOF, viscously damped, periodically excited vibration (Figure 1.) is consists of 
one mass, one viscous damping (damping force is proportional to velocity) and one spring with linear 
characteristic (������� = −��) [6, 7]. The excitation is described by sin(t) function. 
 

 

Figure 1. Model of 1-Degree-Of-Freedom, periodically excited, viscously damped vibration. 

http://creativecommons.org/licenses/by/3.0
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The motion equation of the model is based on the principle of linear momentum: 

 ��� = �	 sin����� − 
�� − �� (1) 
with some modification: 
 ��� + 
�� + �� = �	 sin����� (2) 

The equation of motion is a constant coefficient, linear inhomogeneous differential equation which 
solution consists of the general (�!, free vibration) and the particular (��, excited vibration) solution 
(� = �! + ��). The solution of the homogenous equation �! = "#$%&sin	()� + *) terminates fully by 
time because of damping, so we can focus only on the particular part [5-6]. 

As each part of the equation of motion rotates by the same �� angular velocity, change 
harmonically, the equation can be represented by rotating vectors. φ is the phase shift between exciting 
force and excited motion, and it is caused by damping. The displacement, velocity, acceleration 
vectors of a harmonic vibration is shown on Figure 2. The vectors of forces appearing in equation (1) 
are visible on Figure 3. The resultant force is represented by dashed line, showing the vectors in 
equilibrium position according to the principle of D’Alambert [5]: 

 

 

 

 

Figure 2. Displacement, velocity, acceleration.  Figure 3. Equilibrium of force vectors. 
  

The , and - directional equilibrium force vector equations by the principle of linear momentum [5]: 

 ,:				0 = �	01�2 +����� − �� (3) 

 -:				0 = �	�342 − 
���  (4) 
With some rearrangement: 
 ,:				�	01�2 = ��� − ����� (5) 

 -:				�	�342 = 
��� (6) 

Equation (6) dividing by (5) the phase shift value is: 

 52 = 67���8679:�8 = ;<=><(�$=>?) = ;=>�$=>? (7) 

Bringing out � mass, introducing @ = ;� specific damping factor and �� = �: 

 �52 = AB=>( CB$=>?) = AB=>CB$=>? = �%=>=?$=>? (8) 

Dividing both the denominator and the numerator by ��, introducing D = ;;AEFG = %= damping ratio 

where 
;� = 2�� is the critical damping factor: 
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 �52 = �IJJ>JJ?J?	$	J>?J? = �KJ>J�$	J>?J?  (9) 

So the phase shift between the exciting force and the motion is [5]: 

 2 = LM0	�5 �KJ>J�$NJ>J O?  (10) 

Squaring and adding together equation (5) and (6): 

 �	�(01��2 + �34�2) = �� P�� − ������ + �
����Q (11) 

 � = 67R��$=>?�?S�;=>�?  (12) 

Expanding the denominator and the numerator by 1 �⁄ , entering the @ = 
 2�⁄ , �� = � �⁄  
relationships and the ��& = �	 �⁄  static extension: 

 � = U7C CBRN CB$=>?O?SNAB=>O? = VCG=?R�=?$=>?�?S��%=>�? (13) 

Expanding by �� ��⁄ , entering the D = 
 
;� = 
 2�� = @ �⁄⁄⁄  damping ratio: 

 � = VCG
WX�$J>?J?Y?SN�IJJ>J O?

= VCG
WX�$J>?J?Y?SN�KJ>J O?

 (14) 

Based on that the dimensionless � ��&⁄  scaling factor [5]: 

 
<VCG = �

WX�$J>?J?Y?SN�KJ>J O?
  (15) 

3. Model of 2-Degree-Of-Freedom (2-DOF), damped and excited vibration 
The model of the 2-DOF, viscously damped, periodically excited vibration consists of two masses 

),( 21 mm , two viscous dampers ( 21,kk , where ������� = −
��) and two linear characteristic 

springs (������� = −��) as the Figure 4. shows [6]. 

 

Figure 4. 2-DOF damped and excited vibration model. 

The equation of motions written for the two masses: 

 ��� + 
���� + 
�(��� − ���) + ���� + ��(�� − ��) = �	sin	(���)  (16) 

 ��� + 
�(��� − ���) + ��(�� − ��) = 0  (17) 
Dissolving the brackets: 

 ����� + 
���� + 
���� − 
���� + ���� + ���� − ���� = �	sin	(���)  (18) 
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 ����� + 
���� − 
���� + ���� − ���� = 0  (19) 

Equation (19) can be seen as equilibrium of five forces according to D’Alambert, after changing 
the senses. The equation (19) with opposite senses is represented on Figure 5. by rotating vectors. The 
exciting force does not move the �� mass directly, it is visible only for explanation. 

 

 

 

 

Figure 5. Forces on the �� mass.  Figure 6. �� mass with resultant moving force. 
  

The 
�����, ���� force vectors are substituted by one �[ resultant force (Figure 6.), and now the 
problem is originate in the 1-DOF vibration. Based on that the ��, 
�, �� vibrating system has a 2� + 2\ phase shift to the �[ resultant force. The following relationships are used in the further 
reductions: �� = �����, D� = 
� 2���� = @� ��⁄⁄ . The 2\ angle between the �[ resultant force and 
the ,� axis, and the amplitude of �[: 

 2\ = LM0	�5 ;?<]=>�?<] = LM0	�52 ;?�?=? =>=? = LM0	�52D� =>=?   (20) 

 |�[| = R�
������� + (����)� = ��R�
����� + ���  (21) 

From the equation (21) bringing out �� and substituting D�: 
 |�[| = ����R4N ;?�?=?O� N=>=?O� + 1 = ����R4D�� N=>=?O� + 1  (22) 

So the static extension of ��: 
 ��&� = 6`�? = ��R4D�� N=>=?O� + 1  (23) 

It is visible that only the amplitude of �[ resultant force depends on the motion of ��, its angle 
with ,� axis is independent of ��’s displacement. The 2� phase shift between the motions of the two 
masses: 

 2� = LM0	�5 �K?J>J?�$NJ>J?O? − 2\ = LM0	�5
�K?J>J?�$NJ>J?O? − LM0	�52D� =>=?  (24) 

Using the LM0	�5(�) − LM0	�5(a) = LM0	�5 V$b�SVb trigonometrical relationship, the phase shift of �� to �� is (passing over the simplification): 

 2� = LM0	�5
?c?J>J?]deJ>J?f?$�K?

J>J?
�S ?c?J>J?]deJ>J?f?�K?

J>J?
= LM0	�5 J>J?]?c?eJ>J?f?$

]?c?S�K?   (25) 
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Using equation (14) and (23) the amplitude of the attached mass’ displacement: 

 �� = VCG?
WX�$J>?J??Y

?SN�K?J>J?O?
= <]WgK??NJ>J?O?S�
WX�$J>?J??Y

?SN�K?J>J?O?
= ��h N�K?J>J?O?S�X�$J>?J??Y

?SN�K?J>J?O?
  (26) 

If the �� mass stands still (�� = 0	�), the �� mass cannot move either, in contrast with the 
undamped vibration where using �� = �� excitation, setting ��, ��, ��, �� values properly, �� mass 
could be stopped by moving ��. From equation (26) the rate of amplitudes of the two masses (named 
amplitude rate, ���) can be calculated: 

 ��� = <?<] = h N�K?J>J?O?S�X�$J>?J??Y
?SN�K?J>J?O?

  (27) 

The ��/��&� scaling factor based on (15): 

 
<?VCG? = �

WX�$J>?J??Y
?SN�K?J>J?O?

  (28) 

Before the representation of rotating vectors of ��’s motion, the equation (19) has to be rearranged 
and substituted to (18): 
 ����� = 
���� − 
���� + ���� − ����  (29) 

 ����� + 
���� + ���� +����� = �	sin(���)  (30) 

Rearranging equation (29) according to D’Alambert: 

 0 = �	sin����� −����� − 
���� − ���� −�����  (31) 

The equation (30) is represented again by rotating vectors (Figure 7.). The exciting force is 
responsible not only for the excitation of ��, 
�, �� system, but for the acceleration of �� as well.  2� is the phase shift between the �	 and the displacement of ��, 2� is still the phase shift between the 
displacements of �� and ��. �	, and ������V vectors have to be factored to ,�, -� directions. 

 

 

 

 

Figure 7. Forces of �� mass.  Figure 8. Mass-in-mass damped subsystem. 
  

The ,� and -� directional equilibrium of forces can be described according to D’Alambert, than �	 
has to be brought out: 
 ,�:			���� = �	01�2� +������� +�������01�2�   (32) 

 �	01�2� =	���� −������� −�������01�2�  (33) 
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 -�:			�	�342� = 
����� +��������342�  (34) 

Substituting �� = ����� based on (27), than bringing out  ��: 
 �	01�2� =	���� −������� −����������01�2�  (35) 

 �	�342� = 
����� +�����������342�  (36) 

 �	01�2� = ��(	�� −����� −��������01�2�)  (37) 

 �	�342� = ��(
��� +���������342�)  (38) 

Using (36) and (37) the phase shift between the exciting force and the displacement of ��, and the 
maximum displacement of ��: 
 �52� = 67���8]679:�8] = ;]=>S?j?]=>?���8?	�]$]=>?$?j?]=>?9:�8?  (39) 

 �	�(01��2� + �34�2�) = ���k(	�� −����� −��������01�2�)� + (
��� +���������342�)�l  (40) 

 �� = 67R(	�]$]=>?$?j?]=>?9:�8?)?S(;]=>S?j?]=>?���8?)?  (41) 

4. Damped mass-in-mass subsystem 
The model of metamaterial’s mass-in-mass subsystem with viscous damping is represented by Figure 
8. The exciting force loads directly on the �� mass, while the connection between the two masses’ 
displacements is ensured by the �� spring and 
� damper. The relation between the displacements, the 
phase shift and the amplitude rate can be described by the equation (25) and (27) as well. Both 
variables depend on only the D� damping ratio and the �� ��⁄  frequency rate. The diagram of the 2� 
phase shift is shown on Figure 9.  

It is visible that the highest phase shift can be achieved without damping. In that case, and when the 
exciting frequency is higher than the �� natural frequency, the two masses vibrate in opposite phase. 
As the damping increases, the maximum value of the phase shift decreases and slightly moves right. If 
damping is higher than the critical damping, the maximum phase shift does not exceed 90⁰. As the 
exciting frequency increases, the phase shift converges also to 90⁰. 

The  ��� = �� ��⁄  amplitude rate is represented on Figure 10. The undamped vibration has the 
maximum value either, excited at the �� natural angular frequency. As the damping increases, the 
difference between the two amplitudes decreases, and the maximum values moves left.  

 

 

 

Figure 9. 2�(D�, =>=?) phase shift.  Figure 10. ���(D�, =>=?) = <?<] amplitude rate. 

5. Conclusion 
For the analysis of the model of metamaterial’s mass-in-mass subsystem the rotating vector method 
has been used. It is visible that stopping �� mass can be achieved only at 
� = 0	n�/� damping. As 
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the damping appears between the two masses, the �� = 0	� goal cannot be achieved even exciting at 
the �� natural angular frequency. It is obvious, the damping is smaller, the bigger is the difference 
between the two masses, viewing both the phase shift and the amplitude rate. However the highest 
vibration absorption will be earned at closed to the �� natural angular frequency as well.  
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