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Abstract. The roller profile is of paramount importance in rolling bearing design because, under 
the most bearing loadings, it should provide low stresses and a long bearing life. But, 
unfortunately, it is impossible to find a universal optimal profile for a certain roller whatever the 
actual compressive load on the roller is. In the first part of this paper a complex procedure to find 
the optimal log-profiles of the cylindrical rollers (appropriate to specific bearing loading ranges) 
is presented. Since, for economic reasons, many times it is necessary to machine a simplest 
profile, in the second part of the paper a method to find the best 2ZB approximation (partial 
crowned profile) of the optimal profile of the rollers of a cylindrical roller bearing is given. The 
purpose is defined as an optimization problem and solved by means of Evolutionary Algorithms. 
To validate the optimization and considering four significant criteria, the obtained profile was 
compared with the optimal one and the full crowned profile used until recently. 

1. Introduction 
The fatigue life of any rolling bearing is strongly related to the stress state developed at the contact 
surface between the rollers and raceways, as well as within the material of mating parts [1-2]. 
Unfortunately, an analytical relationship between the geometry of the mating surfaces and the contact 
pressure exists only for a limited number of ideal shapes (Hertz’s theory). For other shapes of the contact 
surfaces, a lot of efforts were done to achieve an appropriate algorithm to obtain the pressure distribution 
along the contact area [3-5]. In this paper, for this purpose, the conjugate gradient method (CGM) 
coupled with discrete convolution fast Fourier transform (DC-FFT) it was used [6-8]. 

Regarding the roller bearings, when a roller of finite length is pressed against a certain ring raceway 
(wider than the roller length) the constant pressure distribution along the roller is altered, and the end 
pressure tends to be significantly higher than that in the center of contact (Figure 1). This phenomenon 
of stress concentration is referred to as “edge loading” or “edge effect”. This undesired condition is 
further aggravated if the rollers are misaligned for any reason: bearing mounting errors, thermal 
distortion of a bearing housing, elastic bending of the shaft under external loads, etc. 

To counteract this condition, cylindrical rollers (and/or the raceways) should be axially “profiled”, 
thereby making the stress distribution as uniform as possible, without edge peaks. It was Lundberg [9] 
who suggested for the first time such kind of profile. He found, that a profile expressed with a 
mathematically logarithmic curve may form, between two aligned cylinders in contact: 

� an axially uniform elliptical transversely stress distribution, and 
� a rectangular contact area. 

http://creativecommons.org/licenses/by/3.0
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(a) (c) 

Figure 1. Pressure distribution along a roller without profile. (a) 3D distribution; (b) axial section 
through 3D pressure distribution; (c) “bone shape” of the contact area. 
 

Note that ISO/TS 16281: 2008(E) [10] provides an equation of the logarithmic profile for cylindrical 
rollers which is essentially identical to the one proposed by Lundberg. An interesting and new proof of 
this equation is given in the next section. 

However, Lundberg’s logarithmic profile has a major drawback: the roller radius reduction (crown 
drop) is theoretically infinite at the roller ends. Lundberg himself proposed an approximation to avoid 
this issue, but the fact that a roller has chamfers at the ends seems to solve the problem. In fact, the point 
where the roller profile meets the chamfer profile is a “sharp point” and, even if the resulting curve is 
continuous in this point, this is an important stress concentration point.  

During the time, many researchers modified the Lundberg’s profile to satisfy different requirements. 
Johns and Gohar [11] revised the basic logarithmic function presented by Lundberg, but the crowning 
profile based on their equation inevitably yields edge loading when the rollers are tilted. Later, Lösche 
[12] brought important improvements, but his work was mostly dedicated to tapper roller logarithmic 
profiles and it was mention here only for historical reasons. 

Fujiwara et al. [13] provided a logarithmic crowning equation by introducing three design parameters 
into Johns and Gohar’s formula to improve the flexibility of the profile design. That was convenient for 
engineering applications and offered a new design approach that prevents edge loading due to 
misalignment. As the authors claimed these three parameters could be optimized by applying a 
mathematical technique according to the operating conditions of the bearing. 

On the other hand, the manufacturing of a logarithmic profile requests an expensive technology and 
for this reason simplified profiles were introduced. Today, there are plenty of crowning cross-section 
profiles including: linear profile with one crowning radius, circular crowning with large radius, ZB type 
roller with linear profile and two crowning radii at the end, CIR (two crowning radii) and B-TAN (three 
crowning radii), and so on. The authors of this paper proposed also a simplified profile, called 2ZB [14] 
and the subsequent improvement of this profile is given in this paper. 

2. Simple proof of the profile equation given in ISO/TS 16281: 2008(E)  
Consider the elastic contact of two elastic bodies presented in Figure 2. The coordinates systems x1y1z1 
and x2y2z2 are introduced such that the axes z1 and z2 point into bodies 1 and 2 respectively, the axes x1 
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and x2 coincide, and the axes y1 and y2 (not shown in Figure 2) complete the respective right Cartesian 
system of coordinates. The two bodies are elastically deformed by the compressive force Q. In any cross 
section along the axis y1 (or y2), for any two points of same abscissa M1 and M2 one can write: 

 �� + �� +�� +�� ≥ � (1) 

where z1 and z2 are the initial separation of the considered points M1 and M2, w1 and w2 are their local 
displacement (see Figure 2), and δ represents the displacement of a point in body 1 with respect to a 
point in body 2, sufficiently far from the contact zone, and situated at the same abscissa. Obviously “=” 
is valid if the points M1 and M2 are within the contact region, and “>” is in force when the mentioned 
points are outside of the contact region. 
 

 

Figure 2. Two elastic arbitrarily shaped bodies in contact. 
 

In addition to the above displacement requirements two constraints regarding the loading of the 
system must be considered: 

1. The values of the contact pressure P (x, y) between the two bodies, in any point (x, y), is positive 
if the point is inside the contact region, and 0 if the point is outside this region. 

2. The integrated pressure distribution over the contact area D is equal to the applied load Q: 

 � = ∬ ��
, ��� d
d� (2) 

Because the dimensions of the contact area are small with respect to the radii of curvature of the 
bodies in elastic contact, it has been agreed [15] that an acceptable approximation to consider that the 
pressure-displacement response for both bodies is identical to that of a half-space. Consequently, the 
following equation for the displacement at point (x, y) because of the pressure P (x', y') can be used: 

 ���
, �� = �������� ∬ ��
′, �′���
 − 
��� + �� − ������� �⁄ d
�d���  (3) 

where νi and Ei are Poisson’s ratio and the Young’s modulus of elasticity for body i respectively, and D 
is the contact area over witch the distributed pressure acts. Combining equations (1) and (3) for any 
point �
, �� ∈ ! one obtains the following general equation: 

 "∬ #$%&,'&(��%�%&��)�'�'&���* �⁄ d
�d��� + +��
, �� + +��
, �� − � = 0	 (4) 

where: 

 " = ���*���* + �������� 	 (5) 

and Zi (x, y) is the equation of the surface of body i, before the elastic deformation. 
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Figure 3. The elastic contact between a cylindrical roller and the plane xy. (a) Roller profile Z (0, y); (b) 
Ideal Hertzian pressure along the rectangular contact area. 
 

The aim of this subsection is to find the equation of the cylindrical roller profile Z (0, y) such that the 
distribution of pressure to follow the Hertz’s distribution (Figure 3) when it comes into contact with an 
elastic flat surface. Obviously, equation (4) becomes: 

 +�
, �� + "∬ #$%&,'&(��%�%&��)�'�'&���* �⁄ d
�d��� − � = 0;			�∀��
, �� ∈ ! (6) 

where one wants the contact area D to be a rectangle 

 ! = �−0,			0� × �−2,			2� (7) 

and the following constraints must be considered: 

 ��
, �� = 3�
�;			�∀�� ∈ �−2,			2� (8) 

 3�
� = 3�−
�;			�∀�
 ∈ �−0,			0� (9) 

 max%∈� 3�
� = 3�0� = �78% (10) 

 3�0� = 0 (11) 

 +�0,0� = 0 (12) 

 +�0, �� = +�0,−�� (13) 

Taking into account all above constraints, from equation (2) it yields:  

 � = 42: 3�
�d
;<  (14) 
and for x = 0 equation (6) becomes: 

 +�0, �� + 2" : 3�
�� ∙ ?�
�, ��d
�;< − � = 0;			�∀�� ∈ �0, 2� (15) 

where 

 ?�
�, �� = ln B%&�)�')C��D* �⁄ )')C
B%&�)�'�C��D* �⁄ )'�C (16) 

In the following it will be more comfortable to use x instead of x'. The composite deflection δ can 
now be expressed by using condition (12) in equation (15): 



5

1234567890‘’“”

KOD 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 393 (2018) 012002 doi:10.1088/1757-899X/393/1/012002

 
 
 
 
 
 

 � = 2" : 3�
� ln B$%�)C�(* �⁄ )CD�%� d
;<  (17) 

With the above value, the following equation is obtained: 

 +�0, �� = 2" : 3�
� ∙ E�
, ��d
;<  (18) 
where 

 E�
, �� = ln B$%�)C�(* �⁄ )CD�F�%�)�')C���* �⁄ )')CGF�%�)�'�C���* �⁄ �')CG (19) 

Noting: 
 
 = 0 ∙ H (20) 

equations (14) and (18) respectively, become:  

 � = 420 : 3�0H�dH�<  (21) 
and 

 +�0, �� = 2"0 : 3�0H� ∙ I�H, ��dH�<  (22) 
where 

 I�H, �� = ln JKLMNO�P�)�Q* �⁄ )�R�
JKLMNO�P�)L�)SNO�Q* �⁄ )�)SNRJKLMNO�P�)L��SNO�Q* �⁄ )��SNR (23) 

Because 

 L;CO� H� = L;CO� ∙ L%CO� ≈ 0 (24) 

the following approximation is obtained: 

 I�H, �� ≈ ln UUL�)SNOL��SNO = − ln K1 − L'CO�Q (25) 

Therefore, by using equation (21), it yields: 

 +�0, �� ≈ −" ∙ W�C ∙ ln K1 − L'CO�Q (26) 

From Hertz’s theory it is well known that: 

 �78% = �� ∙ XYZ[ ∙ X W�C (27) 

Obviously, in the case of a cylindrical roller in contact with an elastic plane: 

 Σ] = ��^_ (28) 

 2 = `�̂  (29) 

where Dwe is the roller diameter and Lw is its length. If the roller and the bearing surface are made of the 
same material it results: 

 " = �$����(�� 	 (30) 

Eventually, substituting all above in the equation (26) one obtains: 
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 +�0, �� = −2�1 − a��� L#bcd� O� !ef ln K1 − L�'`^O�Q (31) 

It worth noting here that if Pmax = 3· 103 MPa, E = 2.05· 105 MPa, ν = 0.3 the resulting equation 

 +�0, �� = −0.00035	!ef ln K1 − L�'`^O�Q (32) 

it is exactly the equation recommended by ISO/TS 16281:2008(E) [10] to be used in order to profile the 
cylindrical rollers of bearings. 

3. Optimal profile of the cylindrical rollers of the bearings 
Regarding the logarithmic profile given by equation (32) must be noted that there were several attempts 
to improve the carrying capacity of the contact, mainly by: 

� minimization of the maximum of the contact pressure; 
� maximization of rigid body displacement; 
� maximization of torque or contact resultant force between the bodies; 
� minimization of frictional power loss. 

In this context, this research (which extends [16]) intends to draw attention to another aspect. The way 
in which the basic curve was obtained suggests clearly that a “logarithm” function must be involved. 
However, there were used a lot of simplifications and approximations, and eliminating them, probably, 
an analytical general equation cannot be developed. In what follows, let any roller crowning profile be 
called “log-profile” if it is expressed logarithmically and has the following form: 

 3��� = jklm ∙ ln�� B1 − L`^��8b`^ Of%nD ∙ ln B1 − L�'`^Of%nD ∙ 10�o	�mm� (33) 

where am is the distance (mm) from the lateral side of the roller where the profile drop (µm) will be 
measured, exp is an integer exponent lying in the range 2 … 12, and Lw is the total length (mm) of the 
roller. In Figure 4 all these can be followed. Note that the value of the distance am is set such that it 
exceeds the axial length of the roller chamfer. In this approach, this is considered equal to the chamfer 
radius. 

 

Figure 4. Design and parameters of the cylindrical roller log-profile. 
 
In Figure 5 the same cylindrical roller, pressed against the same inner ring raceway, with the same 

radial load is presented. The difference consists in the axial profile: in Figure 5(a) the profile is given 
by equation (33), and in Figures 5(b) and 5(c) the exponent of the term (2y/Lw) was turned to 7 and 12, 
respectively (instead of 2). It is very clear that the real 3D distribution of the pressure along the contact 
area between the roller and raceway changes significantly, and equation (33) does not seem to be the 
best solution. Values of the exponent higher than 2 could provide a better (constant) distribution of the 
pressure. Obviously, natural questions arise: what about the constant in front of the logarithm? Can it 
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modify significantly the pressure distribution? And finally: which is the best combination? The aim of 
this section is to answer to these questions. 

3.1. Optimal profile of a given cylindrical roller 
The procedure used in finding the parameters of the optimal profile equation of a certain cylindrical 
roller–defined by the diameter Dwe (mm), length Lw (mm), and chamfer radius rch (mm)–is the following: 

1. Consider a certain value of the maximum Hertzian pressure, Pmax (MPa). 
2. Based on ISO 15:2011 which gives the boundary dimensions of radial bearings, all possible 

bearings that can contains the considered rollers are identified and, for each case, the diameter of 
the inner ring raceway F (mm) is assumed. 
2.1. For any value of the inner ring raceway diameter F and, in addition, for F = ∞:  

2.1.1. Calculate, transforming the equation (28), the normal force necessary to load the roller 
in order to obtain, from the classical Hertz’s theory, the same value of the maximum 
contact pressure.  

 � = �pef − 2kq� ��[#bcd�YZ  (34) 

where: Q is the normal force necessary that load the roller (N), rch is the roller chamfer 
radius (mm), k (mm2N–1) is a constant factor given by the equation (5) using the 
Young’s modulus of elasticity and Poisson’s ratio of the roller and inner ring material 
respectively, Σρ is the curvature sum (mm–1): 

 Σ] = ��^_ + �r (35) 

 

 

   

  

 

  

 

(a) (b) (c) 

Figure 5. Pressure distribution for different values of exp. (a) exp = 2 (ISO); (b) exp = 7; (c) exp = 12. 
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2.1.2. For any assumed combination exp and drop: 
2.1.2.1. Consider the roller manufactured with the resulting profile and find the real 

distribution of the contact pressure between this roller and inner ring raceway 
using a grid (for the contact area) as large as possible. 

2.1.2.2. Store the curve given by the axial section through the obtained 3D pressure 
distribution. 

2.2. Remove from the collected curves those that are not smooth–as in Figure 6(a)–and those that 
are only concave–as in Figure 6(b)–which are too close to point contact, and keep only the 
curves that are (from left to right, until the middle of the roller) concave and then convex–as 
in Figure 6(c). 

2.3. Calculate the standard deviation of the values of pressures. 
2.4. Order these curves, in increasing order of calculated standard deviations, and remove the 

worse one third of the curves. 
2.5. Order the remaining curves, in increasing order of maximum contact pressure values. 
2.6. Store the first five curves (five combinations of exp and drop) for each F. 

3. Identify the most frequent combinations and accept a deal for the winning combination. 
 

   

(a) (b) (c) 

Figure 6. Types of pressure distributions: (a) non-smooth curve containing peaks of pressure, (b)
smooth curve, but only concave and (c) concave-convex curve. 

3.2. Case study 
The main dimension of the considered cylindrical roller for this study are given in Table 1. For both 
roller and ring materials there were used E = 208 000 MPa and ν = 0.3 respectively. According to RKB 
Europe experience, the standard contact pressure at which the study is performed is Pmax= 2 000 MPa. 
For special cases the company uses the value of Pmax= 1 500 MPa also, as second option. In Table 2 the 
possible values of the diameter of the inner ring raceway are presented. The search is automatically done 
within the boundary dimensions provided by ISO 15:2011(E) and using the ratios given in Table 1. In 
Table 2 are shown also the values of the normal load necessary to obtain the assumed Hertzian pressure. 
  

Table 1. Considered roller main dimensions and assumed ratios. 

Dimension 
Value     
(mm) 

 Ratio min max 

Dwe 32  Dwe / [(D – d) / 2] 0.40 0.60 

Lw 32  Lw / B 0.63 0.99 

rch 1     
 
As one can observe from Table 2, a number of 17 possible bearings was identified, the appropriate 

F value was computed assuming that the inner and outer ring are about the same thickness, and in 
addition a final case was added considering the roller contact with a flat plane (F = ∞). 
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Table 2. Possible bearings and roller normal loads (to obtain a Hertzian pressure of 2 000 MPa). 

No. 
F 

(mm) 
d 

(mm) 
D 

(mm) 
B 

(mm) 

Thickness of the 
Dia. Width Dim. Q 

(N) 
Ring 
(mm) 

Rib 
(mm) Series 

1 108 80 200 48.0 14.00 8.0 4 0 04 41 311 
2 126 100 215 47.0 12.75 7.5 3 0 03 42 705 
3 133 105 225 49.0 14.00 8.5 3 0 03 43 165 
4 143 110 240 50.0 16.50 9.0 3 0 03 43 759 
5 163 140 250 50.0 11.50 9.0 2 1 12 44 763 
6 173 130 280 48.0 21.50 8.0 3 8 83 45 192 
7 188 140 300 50.0 24.00 9.0 3 8 83 45 762 
8 193 160 290 48.0 16.50 8.0 2 0 02 45 935 
9 263 220 370 48.0 21.50 8.0 1 0 01 47 742 
10 288 240 400 50.0 24.00 9.0 1 0 01 48 196 
11 348 300 460 50.0 24.00 9.0 0 0 00 49 042 
12 368 320 480 50.0 24.00 9.0 0 0 00 49 267 
13 488 440 600 50.0 24.00 9.0 9 0 09 50 256 
14 508 460 620 50.0 24.00 9.0 9 0 09 50 378 
15 673 630 780 48.0 21.50 8.0 8 0 08 49 320 
16 713 670 820 48.0 21.50 8.0 8 0 08 51 120 
17 758 710 870 50.0 24.00 9.0 8 0 08 51 382 
18 ∞ - - - - - - - - 53 551 

 
Distance from the side of the roller to the point where the profile is measured was set at am = 2.2 mm. 

The range of the search space was given by exp = 2 … 12 and drop = 2 … 12 µm. The procedure 
depicted in the previous sub-section was followed and the most frequent combinations were presented 
in Table 3. 

Table 3. Simulation results. 

  drop (µm) 

exp 

 6 8 10 
4   ○ 
5   ○ 
6  ○  
7  ●  
8  ○  
9 ○   

 
The above procedure was repeated for hundreds of rollers and an interesting thing was observed: the 

value 7 for the exponent appears extremely often. In conclusion, to simplify the identifying process of 
the roller optimal profile, RKB Europe adopted an internal decision: optimal profile will always be 
searched for exp = 7. Consequently, the optimal profile of the considered roller was given by exp = 7 
and drop = 8 µm. Note that for this roller ISO recommends drop = 15 µm (but exp = 2). In Figure 7 the 
founded optimal profile and the ISO profile for the roller in discussion are represented on the same 
system of coordinates. The difference is evident. Note also that 1 mm from the right side is occupied by 
the roller chamfer. 
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Figure 7. Optimal profile vs. ISO recommended profile. 

4. Optimal approximation of the optimal profile of the cylindrical rollers 
For reasons of manufacturing costs, the optimal logarithmic profile should be replaced by a simpler one, 
but without much loss regarding the quality of the mechanical contact. The goal of the following section 
is to find an optimal approximation of the optimal profile and to compare the resulted profile with the 
recently used profile and, eventually, with the “true” optimal profile. 

4.1. 2ZB profiles 
At first, RKB Europe has used the well-known “ZB profile” for its cylindrical rollers. An important step 
forward was made when the ZB profile was enhanced by a full crowning. This profile was used until 
recently and hereinafter will be called “Profile A”.  The proposed approximation of the optimal profile 
consists of a combination of two ZB profiles as presented in Figure 8 and it will be called “2ZB profile”. 
 

 

Figure 8. Definition of the 2ZB profile. 
 

The circle of center O1 and radius R1 intersects the roller generatrix in S and the circle of center O2 
and radius R2 in T. Further, the circle of center O2 and radius R2 intersects the chamfer profile (not 
represented here) in U. Consequently, the roller profile is formed by the straight-line OS, two circle 
segments ST and TU of radius R1 and R2 respectively, and, finally, by the chamfer profile. The abscissae 
of the points S, T, and U will be denoted by s, t, and u, respectively.  

A certain 2ZB profile if fully described by only four parameters (R1, R2, δ, and q) and has the 
following equation: 



11

1234567890‘’“”

KOD 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 393 (2018) 012002 doi:10.1088/1757-899X/393/1/012002

 
 
 
 
 
 

 ?��� = s0,																																																if		0 ≤ � ≤ wx� − y − zx�� − ��,														if		w < � ≤ |x� − �� + y� − zx�� − ��, if		| < � ≤ H (36) 

where t, s, u can be easily calculated with R1, R2, δ, and q. 
The constraints 0 ≤ s < t < u < Lw/2 (where Lw is the total length of the roller) and R1 > R2 must be 

satisfied. Note that if the circle of radius R1 does not exist, the obtained profile is the old ZB cylindrical 
roller profile. The 2ZB profile is completely and uniquely defined by four parameters: R1, R2, δ, and q. 
Obviously, R1, R2, δ are strictly positive and q ≥ 0. Even when the above mentioned constrained are 
satisfied there is an infinite number of combinations each representing a 2ZB profile. When q = 0 the 
circle of radius R1 is tangent to the generatrix of the roller and a certain profile A is generated. 

4.2. Multi-objective optimization 
The first goal of the optimization is to find a function g whose graph is as close as possible to the graph 
of the optimal profile f (Figure 9). The approximation is performed along the interval �}, H�, where c is 
the greatest integer for which the condition 3�}� ≤ 1	μm is still fulfilled. 
 

 

Figure 9. Approximation of the optimal profile. 
 

It is natural to divide the interval �}, H�	into several subintervals of equal width and to associate to 
every point a corresponding distance between the graphs of the functions f and g. In this way an objective 
function can be easily constructed. The function f has a very special shape, especially in its last part, 
toward the roller side. In this part of the curve the curvature radius decreases rapidly with the increasing 
of y conferring a special rounding to the roller. We tried to capture this aspect by defining a special 
distance between the two curves, measured along the normal nj to the graph of the function f. Obviously 
at the very last part of the curves (situation marked with * on Figure 9 the normal to the graph of the 
function f does not intersect the graph of function g in a point whose abscissa is within the interval �}, H�. 
In this case the distance will be measured vertically. For more details reader should refer to [14]. 

The second objective of the optimization was to “smooth” as much as possible the approximate 2ZB 
curve in points S and T. That means that the difference between 180○ and the angle between the semi-
tangents in point S (in point T as well) on the right and on the left to the graph of g must be minimized. 

The obtained weighted objective function was imbedded in optimization software based initially on 
cuckoo search [17] and, eventually, on our cultural evolutionary algorithm [18].   

4.3. Evaluation of the performances of different roller profiles 
In order to evaluate the performances of different roller profiles three possible profiles of a cylindrical 
roller were taken into account: 
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1. Optimal profile (O) (considered as referential); 
2. Until recently used profile A (A); 
3. Optimal approximation profile (OA). 

Also, as evaluation criteria, four important performance indicators were taken into account for a bearing 
with rollers having a certain profile and loaded with several different levels of radial load: 

1. Basic rating life of the bearing (according to ISO 16281: 2008); 
2. Modified rating life of the bearing (according to ISO 16281: 2008); 
3. Maximum contact pressure between the most loaded roller and the inner ring raceway; 
4. Maximum von Mises stress in the inner ring beneath the contact surface between the most loaded 

roller and the inner ring raceway and the depth at this occur.   

4.4. Case study 
The single-row cylindrical roller bearing NJ 320 EMP65SA (Figure 10(a)) was selected for the study of 
the three roller profiles behaviour under different working circumstances. The basic dynamic and static 
load ratings of the bearing are Cr = 389 kN and C0r = 439 kN, respectively. The drawing of the rough 
roller is given in Figure 10(b), and the roller with classical ZB profile is shown in Figure 10(c). As one 
can see the roller is the same as that considered in the previous section. The radial internal clearance of 
the bearing is in the range RIC = 0.170 - 0.195 mm. 
 

 

 
(b) 

 
(a) (c) 

Figure 10. Case study: NJ 320 EMP65SA. (a) assembly; (b) rough roller; (c) ZB profile. 
 

Three possible profiles of a cylindrical roller were taken into account (Table 4): 
 

Table 4. Investigated roller profiles. 

Profile Profile type 
R1 

(mm) 
R2 

(mm) 
δ 

(mm) 
q 

(mm) 
Maximum error relative to the 

optimal profile 
O Logarithmic – – – – – 
A 2ZB 64 000 2 440 0.027 – 4.07 µm (abscissa = 13.957 mm) 

OA 2ZB 7 205 1 274 0.062 0.007 1.96 µm (abscissa = 13.853 mm) 
 

1. Optimal profile (O) (considered as referential): am = 2.2 mm, exp = 7, and drop = 8 µm; 
2. Profile (A): full crowning of 2 µm before manufacturing the ZB profile given in Figure 10(c); 
3. Optimal approximation profile (OA): obtained as it was explained in the previous sub-section. 
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In Figure 11 the profiles A and OA, respectively, are presented together with the optimal profile. 
 

  

(a) (b) 

Figure 11. Roller profiles. (a) optimal vs. profile A; (b) optimal vs. optimal approximation. 
 
Three different working scenarios (loading cases) were set (as it is presented in Tables 5 and 6). 

Whilst speed, working temperature, lubricant, and lubrication quality were maintained the same in all 
three loading cases. In the first case one supposes that there is neither residual (working) radial internal 
clearance (RICw) in the bearing, nor misalignment (ψ) between the bearing bore and housing axes of 
symmetry, in the second case it is assumed only the presence of a certain residual internal radial 
clearance, and finally, in the third loading case both residual radial internal clearance and misalignment 
are present. Regarding the radial load level, it must be mentioned that in each case the maximum value 
was set very close to the value at which the most loaded roller with optimal profile O loses its 
performance by the occurrence of the “edge effect”. Then, six levels of loads were adopted with 
descending step of 15 kN. 
 

Table 5. Working conditions. 

Loading 
case 

Clearance a 
RICw    
(mm) 

Misalignment b 
ψ              

(min) 

Bearing radial load 
Fr                      

(kN) 

Speed   
n    

(rpm) 
I 0 0 100 … 175 

1000 II 0.100 0 85 … 160 
III 0.100 1.5 70 … 145 

a Residual (working) radial clearance. 
b Misalignment between bearing bore and housing axes of symmetry. 

 
Table 6. Grease lubrication conditions. 

Working 
temp. (°C) 

Cleanliness 
Grease base oil 

Kinematic viscosity at 40°C   
(mm2/s) 

Viscosity index VI 

90 Normal 150 95 
 
For all loading cases and for all considered loads the own software for calculating the basic rating 

life, modified rating life, contact pressure between all rollers and inner and outer ring raceways, von 
Mises stresses in rings bellow the contact surfaces was ran using a 256×128 grid for contact surface. 
The main results of these simulations are presented in Tables 7, 8, and 9, and in much more details, only 
for the loading case III, in ANNEX. 

The optimal profile O demonstrated, once again, its undisputable quality and for this reason it was 
always chosen as referential. 
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4.4.1. Loading case I: RICw = 0, ψ = 0 
In Table 7 the main results of the simulations for this case are given. Taking as referential the basic 
rating lives of the bearing with roller with O profile, the basic rating lives of the bearing with A and AO 
profiles, respectively, are given in Figure 12(a). 

The basic rating lives of the bearings with OA profile are with 2- 4% lower than the referential, but 
they are always longer with 11.1 - 4.2% than those of the bearing having rollers with actual profile A. 
As one can see the difference is higher at lower loads and tends to diminish as the bearing load increases. 
This is easily explainable since at very high bearing loads the roller profile does not matter anymore 
because the huge “edge effect” cancels the beneficial presence of the profile, whatever it may be. On 
the other hand, as the load decreases, the difference grows significantly tending towards 15 - 20% and 
the advantage of the OA profile relative to the A profile becomes more evident. The behaviour of the 
variation of the modified bearing lives is like that of basic rating lives and for this reason is not presented 
here in dedicated diagrams. 
 

Table 7. Loading case I: RICw = 0, ψ = 0. 

Radial 
load 
(kN) 

Roller 
profile 

Rating life (hours) a Max. contact 
pressure 
(MPa) 

Max. von Mises stress 

Basic 
L10h 

Modified 
L10mh 

Value 
(MPa) 

Depth 
(mm) 

100 
= 0.26 Cr 

O 6 800 12 194 1 818 1 024 0.30 
A 5 978 9 904 2 164 1 181 0.29 

OA 6 653 11 800 2 086 1 146 0.24 

115 
= 0.30 Cr 

O 4 096 6 103 1 939 1 094 0.31 
A 3 625 5 152 2 288 1 247 0.31 

OA 3 926 5 877 2 240 1 227 0.26 

130 
= 0.33 Cr 

O 2 539 3 552 2 052 1 158 0.34 
A 2 329 2 915 2 399 1 308 0.32 

OA 2 475 3 222 2 380 1 301 0.28 

145 
= 0.37 Cr 

O 1 682 1 975 2 159 1 222 0.35 
A 1 563 1 757 2 681 1 554 0.07 

OA 1 639 1 898 2 510 1 371 0.29 

160 
= 0.41 Cr 

O 1 158 1 229 2 266 1 283 0.37 
A 1 086 1 111 3 159 1 819 0.07 

OA 1 129 1 182 2 635 1 437 0.31 

175 
= 0.45 Cr 

O 822 799 2 429 1 414 0.07 
A 774 728 3 615 2 070 0.07 

OA 802 769 2 751 1 570 0.07 
a According to ISO/TS 16281: 2008(E). 

 
The variation of the maximum contact pressure between the most loaded roller and the inner ring 

raceway versus the bearing radial load is presented in Figure 12(b). The maximum contact pressure in 
the case of OA profile is with 13 - 16% higher than in the similar loading condition for the O profile, 
but the maximum contact pressures developed in the case of the A profile represent 119 - 149% of the 
referential (O profile), reaching very high values for large loads. The higher the bearing radial load, the 
higher is the difference between the maximum contact pressures in the case A and O (or OA), 
respectively. Note that in absolute terms, if the bearing load exceeds 150 kN the maximum contact 
pressure could be far above 3000 MPa in the A profile case, whilst that in O or OA is kept at reasonable 
values, about 500 MPa lower. 

As the bearing load increases the contact pressures between the rollers and raceways increase too 
and, consequently, the von Mises stresses in the rings and rollers increase as well. It is well known that 
a certain non-smooth profile is used, for lower loads, pecks (more or less sharp) appear in the contact 



15

1234567890‘’“”

KOD 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 393 (2018) 012002 doi:10.1088/1757-899X/393/1/012002

 
 
 
 
 
 

pressure distribution along the contact surface between the roller and raceway. These peaks (hereinafter 
called primary peaks) are not at the edges of the contact area but somehow towards the interior. As the 
load increases sooner or later another edge peaks (secondary peaks) are developed and at a certain 
normal load on the roller (i.e. a certain bearing load) these peeks will become higher that the primary 
peaks, and the “edge effect” is fully and strongly enforced. In the studied case, the secondary pecks 
appear very soon (for a bearing radial load under 100 kN) in the case of A profile. There is a “delay” of 
about 30 MPa in the case OA and of about 60 MPa for O profile. The same differences can be observed 
also for the moments in which the secondary peaks exceed the primary peaks. 

 

 
 (a)  

 

 

 

(b)  (c) 

Figure 12. Loading case I: RICw = 0, ψ = 0. (a) Basic rating life (relative to the optimal profile O); (b) 
Maximum contact pressure between the roller and the inner ring raceway; (c) Maximum von Mises 
stress in the inner ring beneath the contact zone between the roller and raceway. 

 
The evolution of the maximum von Mises stress in the bearing rings reflects also all these. Some 

deep (about 0.30 mm beneath the contact area) maxima (called hereinafter lower maxima) are reached 
and these correspond to the primary contact pressure peaks. Then, as the bearing load increases, 
secondary local maxima (called hereinafter upper maxima) appear corresponding to the secondary 
contact pressure peaks. Unfortunately, these upper maxima are located very close to the contact surface 
(about 0.07 mm!) and become very dangerous because any flaw of the material, inclusion, nano-, micro-
crack, or small indentation (that easily could reach this level) will highly amplify these stresses and lead 
soon to the local breakdown of the ring (more likely) or roller material. Obviously, when the secondary 
contact stress peaks become higher than the primary peaks, the values of the upper maximum von Mises 
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stress exceed the values of the lower maxima increasing the already mentioned risk of rings/roller 
material damage.   

The variation of the maximum von Mises stress in the inner ring versus the bearing radial load is 
presented in Figure 12(c). The maximum von Mises stress in the case of OA profile is 11 - 12% higher 
than in the similar loading condition for the O profile, but the maximum von Mises stress developed in 
the case of the A profile represent 115 - 146% of the referential (O profile), reaching very high values 
for large loads. The higher the bearing radial load, the higher is the difference between the maximum 
von Mises stress in the case A and O (or OA, respectively). Note that in absolute terms, if the bearing 
load exceeds 150 kN the maximum von Mises stress could be far over 1700 MPa in the A profile case, 
whilst that in O or OA is kept bellow this value, whatever is the bearing load. It worth mentioning here 
that in the case of the bearing steel 100Cr6 the yield strength is of 1700 MPa, for martensitic structure 
and of 2000 MPa, for bainitic structure. Moreover, when the bearing load reaches 145 kN the maximum 
von Mises stress is located at 0.07 mm deep below the contact surface, whilst this fact happens 45 kN 
“later” for both O and OA profiles. 
 

Table 8. Loading case II: RICw = 0.100, ψ = 0. 

Radial 
load 
(kN) 

Roller 
profile 

Rating life (hours) a Max. contact 
pressure 
(MPa) 

Max. von Mises stress 

Basic 
L10h 

Modified 
L10mh 

Value 
(MPa) 

Depth 
(mm) 

85 
= 0.22 Cr 

O 7 938 15 021 1 844 1 040 0.30 
A 7 065 12 380 2 197 1 196 0.28 

OA 7 766 14 525 2 120 1 164 0.24 

100 
= 0.26 Cr 

O 4 572 7 223 1 969 1 112 0.31 
A 4 153 6 164 2 319 1 263 0.31 

OA 4 462 6 956 2 275 1 247 0.26 

115 
= 0.30 Cr 

O 2 825 3 854 2 085 1 179 0.33 
A 2 609 3 381 2 432 1 357 0.07 

OA 2 755 3 705 2 418 1 322 0.29 

130 
= 0.33 Cr 

O 1 842 2 222 2 195 1 242 0.36 
A 1 720 1 989 2 843 1 644 0.07 

OA 1 797 2 136 2 552 1 393 0.30 

145 
= 0.37 Cr 

O 1 253 1 359 2 299 1 304 0.37 
A 1 177 1 233 3 326 1 911 0.07 

OA 1 222 1 308 2 676 1 459 0.32 

160 
= 0.41 Cr 

O 881 872 2 604 1 509 0.08 
A 830 795 3 781 2 161 0.07 

OA 860 840 2 891 1 666 0.07 
a According to ISO/TS 16281: 2008(E). 

4.4.2. Loading case II: RICw = 0.100 mm, ψ = 0 
The results of the simulations corresponding to this loading case are presented in Table 8. Taking as 
referential the basic rating lives of the bearing with roller with O profile, the basic rating lives of the 
bearing with A and AO profiles, respectively, are given in Figure 13(a). 

The presence of the bearing radial internal clearance leads to a decreasing of the bearing lives in all 
cases and for all profiles by about 28% relative to the values obtained in the simulations corresponding 
to the first loading case. The basic rating lives of the bearings with OA profile are about 2% lower than 
in the case O, but they are longer with 10.1 - 4.2% than those of the bearing having rollers with profile 
A and the difference is higher at lower loads and tends to diminish as the bearing load increases. As the 
load decreases, the difference grows significantly and clearly tends towards higher values as 15 - 20%. 
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 (a)  

 

 

 

(b)  (c) 

Figure 13. Loading case II: RICw = 0.100, ψ = 0. (a) Basic rating life (relative to the optimal profile); 
(b) Maximum contact pressure between the roller and the inner ring raceway; (c) Maximum von Mises 
stress in the inner ring beneath the contact zone between the roller and raceway. 
 

The variation of the maximum contact pressure between the most loaded roller and the inner ring 
raceway as function of the bearing radial load is presented Figure 13(b). The maximum contact pressure 
in the case of OA profile is 11 - 15% higher than those in the case of the O profile, but the maximum 
contact pressures in the case of the A profile represent 119 - 145% of the referential (O profile). The 
higher the bearing radial load, the higher is the difference between the maximum contact pressures in 
the case A and O (or OA), respectively. If the bearing load exceeds 130 kN the maximum pressure could 
be far above 3000 MPa in the A profile case, whilst that in O or OA is kept at much lower values. 

The secondary pecks appear very soon (for a bearing radial load under 85 kN, lower that in the 
previous loading case) in the case of A profile, after a “delay” of about 30 MPa in the case OA and of 
about 60 MPa for O profile. The same differences can be observed also for the moments in which the 
secondary peaks exceed the primary peaks. 

The variation of the maximum von Mises stress in inner ring versus the bearing radial load is 
presented in Figure 13(c). The maximum von Mises stress in the case of OA profile is with 10 - 12% 
higher than in the similar loading condition for the O profile, but the maximum contact pressures in the 
case of the A profile are with 15-47% higher than those developed in the case of the referential (O 
profile), reaching very high values for large loads. The higher the bearing radial load, the higher is the 
difference between the maximum von Mises stress in the case A and O (or OA), respectively. If the 
bearing load exceeds 135 kN the maximum von Mises stress could be far above 1700 MPa in the A 
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profile case, whilst that in O or OA is kept more or less bellow this value, whatever is the bearing load. 
Moreover, when the bearing load reaches about 115 kN the maximum von Mises stress is at 0.07 mm 
deep bellow the contact surface, whilst the lower maxima of the maximum von Mises stress become 
preponderant about 45 MPa “later” (for both optimal O and optimal approximation OA profiles). 

4.4.3. Loading case III: RICw = 0.100 mm, ψ = 1' 30" 
In table 9 the results of the simulations corresponding to the third loading case are given. The basic 
rating lives of the bearing with profiles O, A and AO, respectively, are given in Figure 14(a). 
 

Table 9. Loading case III: RICw = 0.100, ψ = 1' 30". 

Radial 
load 
(kN) 

Roller 
profile 

Rating life (hours) a Max. contact 
pressure 
(MPa) 

Max. von Mises stress 

Basic 
L10h 

Modified 
L10mh 

Value 
(MPa) 

Depth 
(mm) 

70 
= 0.18 Cr 

O 12 713 26 332 1 895 1 073 0.30 
A 11 448 21 886 2 257 1 226 0.30 

OA 12 356 24 927 2 257 1 229 0.25 

85 
= 0.22 Cr 

O 6 871 11 707 2 026 1 149 0.33 
A 6 274 10 042 2 383 1 346 0.07 

OA 6 677 11 102 2 407 1 308 0.28 

100 
= 0.26 Cr 

O 4 049 5 891 2 150 1 221 0.35 
A 3 738 5 172 2 859 1 652 0.07 

OA 3 937 5 602 2 552 1 384 0.30 

115 
= 0.30 Cr 

O 2 544 3 245 2 264 1 288 0.36 
A 2 365 2 891 3 367 1 932 0.07 

OA 2 473 3 091 2 685 1 454 0.32 

130 
= 0.33 Cr 

O 1 678 1 913 2 639 1 523 0.09 
A 1 566 1 715 3 842 2 193 0.07 

OA 1 633 1 828 2 945 1 695 0.07 

145 
= 0.37 Cr 

O 1 151 1 191 3 104 1 776 0.08 
A 1 074 1 076 4 295 2 441 0.07 

OA 1 120 1 138 3 406 1 948 0.07 
a According to ISO/TS 16281: 2008(E). 
 
The presence of the bearing residual radial internal clearance and misalignment between the bearing 

bore and housing axes leads to a decreasing of the bearing lives in all cases and for all profiles by about 
35% relative to the values obtained in the simulations corresponding to the first loading case, that means 
about 7% decrease due to the misalignment. The basic rating lives of the bearings with OA profile are 
about 3% lower than in the case O, but they are longer with 7.7 - 4.3% than those of the bearing having 
rollers with actual profile A. As in the previous cases the difference is higher at lower loads and tends 
to diminish as the bearing load increases. As the load decreases, the difference grows towards 15%. 

In Figure 14(b) is shown the variation of the maximum contact pressure (in absolute values) between 
the most loaded roller and the inner ring raceway as function of the bearing radial load. The maximum 
contact pressure in the case of OA profile is with 10 - 19% higher than those in the case of the O profile, 
but the maximum contact pressures in the case of the A profile represent 119 - 138% of the referential 
(O profile). The higher the bearing radial load, the higher is the difference between the maximum contact 
pressures in the cases A and O (or OA), respectively. If the bearing load exceeds 100 kN the maximum 
contact pressure could be far above 3000 MPa in the A profile case, whilst that in O or OA reaches 
significantly lower values. Moreover, in the case of the actual profile A, for bearing loads over 140 kN 
is very likely that the deformations of the mating parts (roller and inner ring) to enter in the zone of 
plastic deformations. 



19

1234567890‘’“”

KOD 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 393 (2018) 012002 doi:10.1088/1757-899X/393/1/012002

 
 
 
 
 
 

As one can see from Table A1 or Table A2 from ANNEX, in the case of A profile, the secondary 
pecks appear very soon, for a bearing radial load about 60 kN (lower that in the previous loading case). 
That means about 15% of bearing dynamic load rating (that is a very common loading case in real world 
applications). It must be mentioned that the appearance of the first secondary pressure peaks is, again, 
after a “delay” of about 30 MPa in the case OA and of about 60 MPa for O profile. The same differences 
can be observed also for the moments in which the secondary peaks exceed the primary peaks. 

The variation of the maximum von Mises stress in inner ring versus the bearing radial load is given 
in Figure 14(c). The maximum von Mises stress in the case of OA profile is with 10 - 15% higher than 
in the similar loading condition for the O profile, but the maximum contact pressures in the case of the 
A profile are with 14 - 37% higher than those appeared in the case of the optimal O profile, reaching, as 
expected, very high values for large loads. The higher the bearing radial load, the higher is the difference 
between the maximum von Mises stress in the case A and O (or OA), respectively. If the bearing load 
exceeds 100 kN the maximum von Mises stress could be far above 1700 MPa in the A profile case, 
whilst that in O or OA is kept bellow this value, whatever is the bearing load. Moreover, when the 
bearing load reaches about 85 kN the maximum von Mises stress is located at 0.07 mm deep below the 
contact surface, whilst the lower maxima of the maximum von Mises stress become major about 45 MPa 
“later” (for both optimal O and optimal approximation OA profiles). 

 
 (a)  

 

 

 

(b)  (c) 

Figure 14. Loading case III: RICw = 0.100, ψ = 1' 30". (a) Basic rating life (relative to the optimal 
profile); (b) Maximum contact pressure between the roller and the inner ring raceway; (c) Maximum 
von Mises stress in the inner ring beneath the contact zone between the roller and raceway. 
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5. Conclusions 
Examining the simulation results in all three assumed loading cases some important remarks and 
conclusions can be drawn: 

1. The optimal profile O is indeed the best from all points of view assumed in this research; 
2. Whatever is the criterion the optimal approximation profile OA follows constantly the behavior 

of the optimal profile O (the curves of any considered parameter for OA and O profile are 
somehow “parallel”);  

3. The above statement is not valid for the actual profile A, when large or even very large variations 
(relative la O profile behavior) can be observed; 

4. Comparing the behavior of the profiles A and OA one can concluded that in any working 
circumstances and in any loading conditions the OA profile is better than the actual A profile with 
the following remarks: 
a) At lower loads bearing with OA rollers exhibit an increased life with up to 20% than the 

bearing with A rollers. On the other hand, for both profiles, the maximum contact pressure and 
the maximum von Mises stress are in the same range; 

b) At high loads bearing life is somehow independent of the profile used for the rollers, but the 
values of the maximum contact pressure and the maximum von Mises stress in the case of OA 
profile are up to 35% lower than the similar values obtained for the actual A profile. Note that 
this happens even in the case when the bearing works at low loads, but sometimes overloads 
and shocks appear. 

In the case of the A profile the influence of residual internal clearance and misalignment is stronger 
than in the case of OA profile. For example, taking as referential what happens in conditions of zero 
clearance and misalignment, in the case of A profile, for loads over 90 kN the maximum contact pressure 
increases with 50 - 60%, when the clearance and misalignment are present. For the OA profile the 
increase is only about 25 - 35%. 

The same behaviour can be observed when one considers the criterium of the maximum von Mises 
stresses in the inner ring material beneath the contact between the roller and ring raceway. Moreover, 
the presence of the maximum von Misses stress at very lower depth occurs at lower bearing radial loads 
in the case of A profile with respect to profiles O or OA. 

In addition is worth noting here that under the same light load, a fully crowned roller does not use 
the total length of the roller, and for these reason, the partially crowned roller experiences less contact 
stress. Under the same heavier load for a crowned profile the contact stress in the center of the contact 
can greatly exceed that in a partially crowned or even straight profile contact. That is the reason for what 
we believe (as many others, see for example [1] and [19]) that it is preferable the 2ZB profile instead of 
a full crowned one. 

 

 
 

Figure 15. Drawing of the roller with the obtained OA profile. 
 

All these make the OA profile very competitive, and with the observation that from technological 
point of view there is no difference between the OA and A profiles, in Figure 15 is given the drawing 
of the roller with OA profile. 
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Figure 16. Smooth partially crowned profile (S2ZB). 
 

 Once the necessary technology will become enough cheap, the next approach will be the use of the 
smooth 2ZB profile (S2ZB), presented in Figure 16, in the approximation of the optimal log-profile. In 
this way one pressure peak will be removed with significantly positive results.   
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Table A1. Loading case III. Axial section through the contact pressure distribution.  

Fr Optimal profile Profile A Optimal approx. profile 

70 
kN 

   

85 
kN 

   

100 
kN 

   

115 
kN 

   

130 
kN 

   

145 
kN 
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Table A2. Loading case III. Contact pressure distribution (between the roller and IR raceway). 

Fr Optimal profile Profile A Optimal approx. profile 

70 
kN 

   

85 
kN 

   

100 
kN 

   

115 
kN 

   

130 
kN 

   

145 
kN 
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Table A3. Loading case III. Maximum von Mises stress in the inner ring. 

Fr Optimal profile Profile A Optimal approx. profile 

70 
kN 

   

85 
kN 

   

100 
kN 

   

115 
kN 

   

130 
kN 

   

145 
kN 
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Table A4. Loading case III. Von Mises stress in the inner ring at the depth it reaches its maximum.  

Fr Optimal profile Profile A Optimal approx. profile 

70 
kN 

   

85 
kN 

   

100 
kN 

   

115 
kN 

   

130 
kN 

   

145 
kN 

   

Note: Where needed, white arrows indicate the position of the maximum von Misses stress along the plane 
parallel to the contact surface. 

 



26

1234567890‘’“”

KOD 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 393 (2018) 012002 doi:10.1088/1757-899X/393/1/012002

 
 
 
 
 
 

References 
[1] Harris T A and Kotzalas M N 2007 Advanced Concepts in Bearing Technology, CRC Press, 

Taylor & Francis Group, LLC 
[2] Johnson K L 1985 Contact Mechanics, Cambridge University Press 
[3] De Mull J M, Kalker J J and Fredriksson B 1986 The Contact Between Arbitrarily Curved Bodies 

of Finite Dimensions, Journal of Tribology 108 40-148 
[4] Poplawski J V, Zaretsky E V and Peters S M 2000 Effect of Roller Profile on Cylindrical Roller 

Bearing Life Prediction, Annual Meeting sponsored by the Society of Tribologists and 
Lubrication Engineers, Nashville, USA, May 7-11, NASA/TM-2000-210368, pp. 1-28 

[5] Zhao J 2015 Fast Solvers for Concentrated Elastic Contact Problems, Technische Universiteit 
Delft, The Netherlands, PhD Thesis 

[6] Liu S, Wang Q and Liu G 2000 A Versatile Method of Discrete Convolution and FFT (DC-FFT) 
for Contact Analyses, Wear 243 101-111 

[7] Polonsky I and Keer L M 1999 A Numerical Method for Solving Rough Contact Problems Based 
on the Multi-Level Multi-Summation and Conjugate Gradient Techniques, Wear 231 206-219 

[8] Wang Q J and Chung G Y-W (Eds.) 2013 Encyclopaedia of Tribology, Springer 
[9] Lundberg G 1961 Elastic Contact Between Two Semi-Infinite Bodies, Fur Schung auf dem 

Gebieto des Engenienswesens 10(5) 165-174 
[10] ISO/TS 16281: 2008(E) Rolling Bearings — Methods for Calculating the Modified Reference 

Rating Life for Universally Loaded Bearings 
[11] Johns P M and Gohar R 1981 Roller Bearings Under Radial and Eccentric Loads, Tribology 

International 14 31-136 
[12] Lösche T 1987 Capacity Increase Due to Modified Line Contact in Cylindrical and Tapered Roller 

Bearing, Ball and Roller Bearings Engineering 1 4-9 
[13] Fujiwara H, Kobayashi T, Kawase T and Yamauchi K 2010 Optimized Logarithmic Roller 

Crowning Design of Cylindrical Roller Bearings and Its Experimental Demonstration, 
Tribology Transactions 53(6) 909-916 

[14] Tudose L, Ursache C, Tudose C and Rusu F 2016 Optimal 2ZB Approximation of Optimal Profile 
of Rolling Bearings Cylindrical Rollers, 5th International Conference on Power Transmissions 
BAPT, Ohrid, Macedonia, October 5-8, pp. 99-113 

[15] Hartnett M J 1980 A General Numerical Solution for Elastic Body Contact Problems, ASME AMD 
(Am Soc Mech Eng Appl Mech Div) 39 51-66 

[16] Tudose L, Tudose C and Ursache C 2017 Optimal Profiles of Cylindrical rollers of Rolling 
Bearings, 8th International Scientific Conference on Research and Development of Mechanical 
Elements and Systems IRMES, Trebinje, Bosnia and Herzegovina, September 7-9, pp. 47-52 

[17] Zheng H and Zhou Y 2012 A Novel Cuckoo Search Optimization Algorithm Based on Gauss 
Distribution, Journal of Computer Information Systems 8(10) 4193-4200 

[18] Tudose L, Kulcsar G and Stănescu C 2013 Pareto Approach in Multi-Objective Optimal Design 
of Single-Row Cylindrical Rolling Bearings, Power Transmissions, Mechanisms and Machine 
Science 13 519-528 

[19] Najjari M 2014 Characterization of Edge-Contact Influence on Tridimensional EHD Film Shape, 
Pressure, Stress and Temperature Distribution, Université de Québec, Canada, PhD Thesis 

 


