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Abstract. In the mechanics of granular and other materials the system of equations comprising 

the rigid plastic double slip and rotation model together with the stress equilibrium equations 

under plane strain conditions forms a hyperbolic system. Boundary value problems for this 

system of equations can involve a frictional interface. An envelope of characteristics may 

coincide with this interface. In this case, the solution is singular. In particular, some 

components of the strain rate tensor approach infinity in the vicinity of the frictional interface. 

Such behavior of solutions is in qualitative agreement with experimental data that show that a 

narrow layer of localized plastic deformation is often generated near frictional interfaces. The 

present paper deals with asymptotic analysis of the aforementioned system of equations in the 

vicinity of an envelope of characteristics. It is shown that the shear strain rate and the spin 

component in a local coordinate system connected to the envelope follow an inverse square 

root rule in its vicinity. 

1. Introduction 

Singular solutions have been studied for several rigid plastic models. In particular, the rigid perfectly 

plastic model has been considered [1]. In this work, three dimensional flow of material obeying an 

arbitrary smooth yield criterion and its associated flow rule has been analysed. It has been shown that 

the singular solutions appear near surfaces on which the shear stress is equal to the shear yield stress 

and that the quadratic invariant of the strain rate tensor follows an inverse square root rule near the 

surface. This result has been extended to a class of viscoplastic models in [2] for planar flow and in [3] 

for axisymmetric flow. The constitutive equations of this class of models include a saturation stress. In 

particular, the yield stress in tension approaches the saturation stress as the quadratic invariant of the 

strain rate tensor approaches infinity. The qualitative asymptotic behaviour of solutions is controlled 

by the exact asymptotic behaviour of the dependence of the yield stress on the quadratic invariant of 

the strain rate tensor at infinity. For a certain class of functions the quadratic invariant of the strain rate 

tensor follows an inverse square root rule near the surface where the shear stress is equal to the shear 

saturation stress. The model of anisotropic plasticity proposed in [4] has been investigated in [5] under 

plane strain conditions. The corresponding system of equations is hyperbolic. The singularity in 

solutions develops near envelopes of characteristics. The exact asymptotic singular behaviour of 

solutions depends on the shape of the yield surface near the point corresponding to the state of stress at 

the envelope. For a certain class of functions the quadratic invariant of the strain rate tensor follows an 
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inverse square root rule near the envelope. The present paper deals with plane strain deformation of 

materials that obeys the rigid plastic double slip and rotation model proposed in [6]. The 

corresponding system of equations is hyperbolic. It is shown that the shear strain rate and the spin 

component in a local coordinate system connected to an envelope of characteristics follow an inverse 

square root rule in its vicinity. 

   The technological value of the present research is that a narrow layer of localized plastic 

deformation is generated near frictional interfaces in machining and deformation processes ([7]-[16] 

among many others). These layers affect the performance of machine parts [17]. The main theoretical 

result reported in [1]-[3], [5] as well as in the present paper for the rigid plastic double slip and 

rotation model demonstrates that the models considered in these papers are capable of predicting the 

generation of the layer of localized plastic deformation near frictional interfaces. 

2. The rigid plastic double slip and rotation model under plain strain 

The double slip and rotation model has been proposed in [6]. Under plane strain conditions of 

incompressible material, the rigid plastic constitutive equations of the model are the Mohr - Coulomb 

yield criterion (other yield criteria may be adopted as well) and the flow rule. In an arbitrary Cartesian 

coordinate system  ,x y  these equations can be written as 

    
2

2sin 4 2 cosxx yy xx yy xy k            (1) 

and   

    0, sin 2 2cos2 2sin 0.xx yy xx yy xy xy               (2) 

Here xx , yy  and xy  are the components of the stress tensor referred to the  ,x y  coordinate 

system, xx , yy  and xy  are the components of the strain rate tensor referred to the  ,x y  coordinate 

system, xy  is the only non-zero spin (vorticity) component referred to the  ,x y  coordinate system, 

  is the angle between the x  direction and the greatest principal stress 1  
measured from the x  

direction anti-clockwise,   is the intrinsic spin due to grain rotation, k is the cohesion, and   is the 

angle of internal friction. The quantity   is an unknown variable which is governed by the equation 

of rotational motion. It is often reasonable to suppose that in the interior of the yielding region the 

grain rotation is either zero or averages to zero [18]. In the present paper, it is assumed that   is 

constant. 

3. Characteristics, characteristic relations and envelopes 

The system of equations comprising (1), (2) and the equations of equilibrium is hyperbolic. Let xu  and 

yu  be the velocity components referred to the Cartesian coordinate system. Then, equation (2) can be 

rewritten as   

 

   

0,

sin 2 cos2 sin cos2 sin 2 sin 0.

yx

y yx x

uu

x y

u uu u

x y y x
     


 

 

   
        

    

 (3) 

The components of the stress tensor can be represented as [19]   

 cos2 , cos2 , sin2xx yy xyp q p q q             (4) 

where p and q are the stress invariant defined as   
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 

 
2

21
, .

2 4

xx yy

xx yy xyp q
 

  


      (5) 

Then, the yield criterion (1) becomes  

 sin cos .p q k     (6) 

The equilibrium equations are   

 0, 0.
xy xy yyxx

x y x y

     
   

   
 (7) 

Substituting (4) into (7) yields   

 

cos2 2 sin 2 sin 2 2 cos2 0,

sin 2 2 cos2 cos2 2 sin 2 0.

p q q
q q

x x x y y

q p q
q q

x x y y y

 
   

 
   

    
     
    

    
    

    

 (8) 

In these equations, p can be eliminated by means on (6). The resulting system contains two unknowns, 

q and  . This system is hyperbolic and the angle between the direction of the greatest principal stress 

1  
and the characteristic directions is  4 2    [19]. The Cartesian  ,x y

 
and characteristic 

 ,  coordinate systems are illustrated in Fig. 1. It is always possible to rotate the Cartesian 

coordinate system such that its xaxis is tangent to an    
characteristic curve at a given point. Then, 

4 2     at this point and equation (3) becomes   

 0, cos sin sin 0.
y yx x

u uu u

x y x x
  

  
    

   
 (9)  

 

Figure 1. Cartesian and characteristic coordinates. 

 

In the second equation of this system the derivative yu y   has been eliminated by means of the first 

equation. The second equation in (9) is one of the characteristic relations. This equation is valid if 

xu y   . In order to study the behaviour of solutions in the vicinity of an envelope of  
 

characteristic curves, it is necessary to assume that  
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 xu

y





 (10) 

as 0y  . In this case the second equation in (9) is not valid because   

  cos2 sin 0xu

y
 


 


 (11) 

at 0y  . Eliminating the derivative yu y   in the second equation in (3) by means of the first 

equation yields   

    2sin 2 cos2 sin cos2 sin 2 sin 0.
yx x

uu u

x y x
     

 
      

  
 (12) 

In what follows, it is assumed that the in-surface derivatives are bounded. Then, it follows from (12) 

that  

  cos2 sin xu

y
 


  


 (13) 

at 0y  . 

4. Asymptotic analysis 

Consider the solution behaviour of equations (3) and (8) in the vicinity of the maximum friction 

surface assuming that equation (11) is satisfied. It is convenient to adopt the Cartesian coordinate 

system whose x- axis is tangent to the maximum friction surface at a given point (i.e. 4 2     

at this point) and whose origin is situated at this point (i.e. 0y   at this point). In what follows, it is 

assumed that the solution is represented by power series of y near 0y  . Then, the velocity component 

xu  is represented as   

  0 1 2xu u u y u y o y     (14) 

as 0y  . Here 0u  and 1u  are independent of y. Since the velocity component xu  
must be bounded, it 

is obvious from (12) that 0  . On the other hand, equation (11) demands 1  . Therefore,    

 0 1.   (15) 

The angle   is represented as  

  0 1
4 2

y y o y 
        (16) 

as 0y  . Here 0  and 1  are independent of y and 0  . Substituting (14) and (16) into (11) and 

taking into account (13) gives 1 0     or    

 1 .    (17) 

It is seen from (15) and (17) that 0 1.   Then, it follows from (16) and (17) that  



5

1234567890‘’“”

ICSMM 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 311 (2018) 012014 doi:10.1088/1757-899X/311/1/012014

 

 

 

 

 

 

 

   

   

   

   

1

0 1

1

0 1

1

0 1

1

0 1

cos2 sin 2cos ,

sin 2 cos 2sin ,

cos2 sin 2cos ,

cos2 sin 2sin 2cos

y y o y

y y o y

y y o y

y y o y









    

    

    

     









    

   

    

     

 (18) 

as 0y  . Using (14) the first equation in (3) can be represented as     

  0 1 1yu du du du
y y o y

y dx dx dx




    


 (19) 

as 0y  . Integrating this equation with respect to y leads to     

  0
y

du
u y o y

dx
    (20) 

as 0y  . It has been taken into account here that it is always possible to assume with no loss of 

generality that the rigid tool is motionless and, therefore, 0yu   at 0y  . Using (14), (18) and (20) 

the terms involved in (12) are represented as  

 

 

   

   

10 1 0
0

1

0 1 0 2 1 1

2sin 2 2cos 2cos 4 sin ,

cos2 sin 2 cos 2 cos 2 cos ,

cos2 sin

x

x

y

u du du du
y y O y

x dx dx dx

u
u u y u y O y

y

u
O y

x

 

 

    

         

 






   




     




 



 (21) 

as 0y  . Substituting (21) into (12) gives      

 

   

0 1
0 1 1 1

1

0 2

2 cos cos sin 2cos

2 cos 2sin

du du
u u y

dx dx

u y O y





       

   

   
       

   

 

 (22) 

as 0y  . It is seen from this equation that 1     or      

 
1

.
2

   (23) 

It remains to demonstrate that this result does not contradict the stress equations. Eliminating p in (8) 

by means of (6) yields       

 

1
cos2 2 sin 2 sin 2 2 cos2 0,

sin

1
sin 2 2 cos2 cos2 2 sin 2 0.

sin

q q
q q

x x y y

q q
q q

x x y y

 
   



 
   



     
     

    

    
     

    

 (24) 

Using (17) and (23) it is possible to rewrite equations (16) and (18) in the form 
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 

   

   

0 1

0 1

0 1

,
4 2

cos2 sin 2cos ,

sin 2 cos 2sin

y y o y

y y o y

y y o y

 
  

    

    

    

    

   

 (25) 

as 0y  . Then,  

 

   

   

2

0 1

2

0 1

1 1 sin
cos2 2cos ,

sin sin

1 cos
cos2 2cos

sin sin

y y o y

y y o y


   

 


   

 


     

    

 (26) 

as 0y  . It is seen from (25) that  

 
1 1

cos2 , sin 2q O q O
y yy y

 
 

    
           

 (27) 

as 0y  . Therefore, it follows from (24), (25) and (26) that  1q y O y    as 0y  . Then, the 

function q can be represented as  

  0 1 2q q q y q y o y     (28) 

as 0y  . Here 0q , 1q  
and 2q  are independent of y. It follows from (25), (26) and (28) that   

 

   
 

 

   

2 2

0 1 0
0

0
0

1
2 1 0

0 0
1 0

1 sin 1 sin1
cos2 2 cos ,

sin sin sin

cos2
2 sin 2 2 cos ,

cos
sin 2 cos sin ,

2

sin 2 sin
2 cos2 2

q dq dq dq
y O y

x dx dx dx

d
q q q y O y

x x dx

q q
q q O y

y y

q
q q q

y y y

 
  

  

  
 


   

   
 

    
       

     

 
    

 


   



 
    

 
   

 

 

 

0 1

0 1 0
0

0
0

2 2

1 2
1 0

0 0

sin ,

sin 2 cos cos 2 sin ,

sin 2
2 cos2 2 sin ,

1 cos cos
cos2 cos ,

sin sin2sin

cos2
2 sin 2

q O y

q dq dq dq
y O y

x dx dx dx

d
q q q y O y

x x dx

q q q
q O y

y y

q
q q

y y

 

    

  
 

 
  

 

  




  
    

  

 
   

 

   
        

   

 
  

 
   0 1 1 0

cos
2 cosq q O y

y


    

 (29) 

as 0y  . It is seen from (24) and (28) that each of the equations in (24) reduces to the equation of the 

form  A B y o y   as 0y 
 
where A and B are independent of y if  

 1 0 0cot 2 0.q q    (30) 
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In this case, equation (24) is compatible with (23) and the asymptotic representation of the velocity 

component xu  in the vicinity of the envelope (or the maximum friction surface) follows from (14) and 

(23) in the form  

  0 1xu u u y o y    (31) 

as 0y  . It is seen from this equation that  1xu y O y    as 0y   
and, therefore, both 

 1xy O y   and  1xy O y   as 0y  . 

5. Conclusions 

It has been shown that plane strain rigid plastic solutions for the double slip and rotation model for 

incompressible material are singular (in the sense that some space derivatives of velocities and stresses 

approach infinity) in the vicinity of maximum friction surfaces. The maximum friction surface is 

defined by the condition that an envelope of characteristics coincides with the surface. The exact 

asymptotic expansion of velocities, strain rates and stresses in the vicinity of singular surfaces has 

been found. It has been hypothesized that this singular behaviour of the velocity field can be adopted 

for describing the evolution of material properties in a narrow layer near frictional interfaces cause by 

highly localized plastic deformation.  
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