PAPER • OPEN ACCESS

Characterization of Ball Milled $\mathrm{Al}_{-} \mathrm{Al}_{2} \mathrm{O}_{3}$ sub-micron Composites

To cite this article: E. Dagasan et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 295012045

View the article online for updates and enhancements.

You may also like
Sliding wear study of WC-10Co4Cr clad on SS-316 using microwave energy Paramjit Singh, Deepak Kumar Goyal and Amit Bansal

- Effect of WC content on microstructure hardness, and wear properties of plasma cladded Fe-Cr-C-WC coating Renyue Yuan, Xuewei Bai, Haozhe Li et al.

Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis Guolong Zhao, Biao Zhao, Wenfeng Ding et al.

Characterization of Ball Milled $\mathrm{Al}-\mathrm{Al}_{2} \mathrm{O}_{3}$ sub-micron Composites

E. Dagasan ${ }^{(a)}$, E. Gercekcioglu ${ }^{(b)}$, S. Unalan ${ }^{(b)}$
${ }^{a}$ Erciyes University, Engineering Faculty, Department of Materials Science and Engineering, 38039 Kayseri, Turkey
${ }^{b}$ Erciyes University, Engineering Faculty, Department of Mechanical Engineering, 38039 Kayseri, Turkey

Abstract

The purpose of this study is to investigate properties of the composite powders produced by ball milling process. Different weight ratio of high purity $\mathrm{Al}_{2} \mathrm{O}_{3}$ powders were added to the Al matrix as reinforcing element. Ball milling process was conducted by a planetary type ball mill with WC milling balls and vial at constant parameters like rotating speed, time, Ball-to-Powder ratio and Process Control Agent. Samples that taken from the powder mixtureby various time intervals were analyzed by SEM, XRD and BET surface area and porosity measurement systems.

Keywords: Mechanical Milling, Aluminium Matrix Ceramic Reinforced Composites, $\mathrm{Al}_{2} \mathrm{O}_{3}$, Ball Milling.

1. Introduction

Mechanical alloying (MA) allows production of homogeneous materials starting from blended elemental powder mixtures [1, 2]. The process is generally achieved by the association of high-energy ball mills.

Mechanical Alloying (MA) is a process that consists of repeated cold welding and fracturing mechanisms of powders (Figure 1.b). And mainly used for creating alloys without melting. Additionally, this technique enable economical and rapid preparation of nanocomposites and ceramics [3]. Although there are different methods to fabricate composite materials, powder metallurgy enables net-shape and cost-effective processing with controlled microstructure and mechanical properties [4].

By the way particulate-reinforced aluminum MMCs have found an extensive commercial application in several sectors namely aerospace, space, automotive and structural [5]. This shows an excellent combination of mechanical and physical properties such as the specific strength and the stiffness, the wear resistance, and the electrical and the thermal conductivities $[6,7,8]$.

Many methods are suitable for preparing aluminum matrix composites. In the liquid methods particles are added to the liquid aluminum by stirring before casting [9]. However, the difference in thermal expansion coefficients between ceramic particles and molten Al constituents and the poor wettability between these two become an obstacle to the liquid method for synthesizing Al matrix composite [10]. That makes MA advantageous for the production of Al-MMCs. Many ceramic particles like $\mathrm{Al}_{2} \mathrm{O}_{3}$
[11], $\mathrm{SiC}[12], \mathrm{B}_{4} \mathrm{C}[13,14]$ and $\mathrm{SiO}_{2}[15]$ are used as reinforcement for Al and its alloys for making properties better.

Figure 1. Schematical View of Mechanical Alloying Process.

2. Experimental Details

2.1. Milling Operations

High purity Al matrix was reinforced with high purity $\mathrm{Al}_{2} \mathrm{O}_{3}$ powders by using a planetary ball mill. Properties of the initial powders are given in Table 1.

Table 1. Properties of the Initial Powders.

	Purity	Particle Size
Al (Alfa Aesar- Al 00010)	$99,8 \%$	$-40+325$ mesh
$\mathbf{A l}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$ (AEE-AL 602)	$99,9 \%$	-325 mesh

To investigate the effect of $\mathrm{Al}_{2} \mathrm{O}_{3}$ on the properties of composite powder $5,10,15$ and $20 \mathrm{wt} . \%$ were added to the Al matrix. Ball milling process was conducted by the help of a FRITSCH Pulverisette 6 type planetary ball mill by using tungsten carbide vial and balls. $\mathrm{Al}^{-} \mathrm{Al}_{2} \mathrm{O}_{3}$ mixtures were mixed and loaded into the vial under high purity argon atmosphere by using a MBRAUN GB-2202-PVAC glove box. Parameters that are kept constant for all specimens are given in Table 2.

Table 2. Constant Milling Parameters.

Rotational Speed	250 rpm
Total Ball Weight	336 gr
BPR (Ball-to-Powder Ratio)	$10: 1$
Total Powder Weight	$33,6 \mathrm{gr}$
Vial Capacity	250 ml WC
Milling Atmosphere	High Purity Argon
PCA (Process Control Agent)	$\% 1.5$ Stearic Acid
Total Milling Time	120 hrs

Milling operations were stopped by time intervals of 30 hours to take samples from the powder mixture. Taken samples were then used for SEM, X-RD and BET surface area analyzes.

2.2. SEM and Morphological Studies

To evaluate the morphological changes during ball milling SEM micrograms of specimens were taken by a LEO 440 type scanning electron microscope. Particle size analyzes were then realized on the SEM images by the help of an image processing software named Image ProPlus.

2.3. X-RD Analyses

X-RD analyses were conducted by a Bruker AXS D8 Advance type analyzer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=0,15406 \mathrm{~nm})$. XRD patterns were recorded in the 2θ range $10-90^{\circ}$.

2.4. BET Surface Area and Pore Size Analyses

Surface area and pore size analyses of the composites were measured by a Micromeritics Gemini VII type analyzer. Both single point and multi point results were conducted by using nitrogen as adsorbent.

3. Results

3.1. SEM and Morphological Studies

SEM micrograms of as-received Al and $\mathrm{Al}_{2} \mathrm{O}_{3}$ are given in Figure 2.

Figure 2. SEM Images of As-Received (a) Al , (b) $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Images of Al- $\% 5 \mathrm{Al}_{2} \mathrm{O}_{3}$ powder mixture that is ball milled for $30,60,90$ and 120 hours are given in Figure 3.

Figure 3. SEM Images of the $\mathrm{Al}-5 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ Powder Mixtures Milled for (a) 30 Hours, (b) 60 Hours, (c) 90 Hours and (d) 120 Hours.

It is clear that at initial stages of the milling process (Figure 3.a and 3.b), the powder mixture tend to flatten because of the ductile Al matrix and also the number of the broken particles of brittle reinforcement is less. At the same time it can be also said that particles are sharp cornered at initial stages. But as the milling time goes further particles became round and homogenized by means of particle size.

Figure 4, shows the morphological evaluation of $\mathrm{Al}-\% 10 \mathrm{Al}_{2} \mathrm{O}_{3}$ composite powder. As the previous sample flattening tendency goes on. But due to the increase in the weight ratio of $\mathrm{Al}_{2} \mathrm{O}_{3}$ an increase in the number of broken $\mathrm{Al}_{2} \mathrm{O}_{3}$ particles is also observed.

Figure 4. SEM Images of the Al- $10 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ Powder Mixtures Milled for (a) 30 Hours, (b) 60 Hours, (c) 90 Hours and (d) 120 Hours.

Figure 5 and Figure 6 show microstructures of $\mathrm{Al}-\% 15 \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Al}-\% 20 \mathrm{Al}_{2} \mathrm{O}_{3}$ powder mixtures milled for different periods, respectively. For the powder mixture of $\mathrm{Al}-\% 15 \mathrm{Al}_{2} \mathrm{O}_{3}$ flattening tendency which starts at the initial stages of milling can still be observed after 60 hours of milling. After 90 hours of milling it can be seen that flattening tendency ends and spherical particles can be observed.

When SEM images of $\mathrm{Al}-\% 20 \mathrm{Al}_{2} \mathrm{O}_{3}$ specimen is investigated it can be seen that formation of small particles starts earlier because of the increasing $\mathrm{Al}_{2} \mathrm{O}_{3}$ content.

Figure 5. SEM Images of the $\mathrm{Al}-15 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ Powder Mixtures Milled for (a) 30 Hours, (b) 60 Hours, (c) 90 Hours and (d) 120 Hours.

When the 120 hour milled microstructures of the samples that contain different weight ratio of reinforcing element are compared, it can be easily said that number of spherical particles increase by increasing $\mathrm{Al}_{2} \mathrm{O}_{3}$ content.

Figure 6. SEM Images of the Al- $20 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ Powder Mixtures Milled for (a) 30 Hours, (b) 60 Hours, (c) 90 Hours and (d) 120 Hours

While evaluating the particle size change of specimens during milling, 12 images taken at six different magnitudes of $100 \mathrm{X}, 500 \mathrm{X}, 1 \mathrm{KX}, 2 \mathrm{KX}, 5 \mathrm{KX}, 10 \mathrm{KX}$ and 20 KX were processed by Image ProPlus software for each specimen. Figure 7 gives an example for the analyze.

Figure 7. Average Particle Size Measuring Example of 30 Hours Milled Al- 5 \% SiC Powder Mixture by Image ProPlus \circledR.

Figure 8 and Table 3 give the particle size change vs milling time. As expected particle size of each specimen decrease as milling process goes further. After early stages of milling average particle size of the samples changes in a wide range between $6,257-120,06 \mu \mathrm{~m}$. That significant result may be due to the dominant cold welding mechanism during milling. As milling goes further to 60 hours same trend still goes on. But at the progressive stages, because a steady state is reached between cold welding and fracturing mechanisms, particle sizes of the specimens became steady. So final particle sizes of the samples are close to each other.

Figure 8. Particle Size Change of $\mathrm{Al}-\mathrm{Al}_{2} \mathrm{O}_{3}$ Composite Powder Mixtures by Milling Time.
Table 3. Particle Size Change against Milling Time.

Milling Time (Hour)	Particle Size of Al-Al $\mathbf{O}_{\mathbf{3}}$ Powder Particles After Milling ($\boldsymbol{\mu} \mathbf{m}$)			
	$\mathbf{A l}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$ Content (\% Wt.)			

3.2. XRD Results

Figure 9 gives the XRD pattern of as-received Al and $\mathrm{Al}_{2} \mathrm{O}_{3}$. In order to investigate if any contamination exists because of the stearic acid added XRD pattern of the stearic acid was also taken.

Figure 9. XRD patterns of the as received pure $\mathrm{Al}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and Stearic Acid.

From Figure 10, it is obvious that because of the high Al content of the mixture, all major peaks observed in the pattern match pure Al peaks recorded. But also intensity of those peaks decreases by milling time. For example the intensity of the major Al peak recorded at $2 \theta=38,38^{\circ}$ decreases to 104 after 120 hours of milling. And XRD patterns also show that 2θ degrees increase by increasing milling time. According to the Bragg's Law that result shows the distance between atomic planes decrease by the milling process.

Figure 10. XRD patterns of the $\mathrm{Al}-5 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ Powder Mixtures Milled for 30 Hours, 60 Hours, 90 Hours and 120 Hours.

Figure 11 gives the XRD powder pattern for $\mathrm{Al}-\% 10 \mathrm{Al}_{2} \mathrm{O}_{3}$ mixture. Although similar results to the $\mathrm{Al}-\% 5 \mathrm{Al}_{2} \mathrm{O}_{3}$ can be said, due to the increasing $\mathrm{Al}_{2} \mathrm{O}_{3}$ content pure $\mathrm{Al}_{2} \mathrm{O}_{3}$ peaks like the one at $2 \theta=$ $35,14^{\circ}$ can be seen initially. But the intensity of that peak decreases and then disappears by increasing milling time.

Figure 11. XRD patterns of the $\mathrm{Al}-10 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ Powder Mixtures Milled for 30 Hours, 60 Hours, 90 Hours and 120 Hours.

Al- \% $15 \mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{X}-\mathrm{RD}$ pattern can be seen in Figure 12. Significant peaks that appear at 2θ degrees $43,34^{\circ}, 52,68^{\circ}$ and $57,44^{\circ}$ can be seen for the first time and belong to pure $\mathrm{Al}_{2} \mathrm{O}_{3}$. Similar results and peaks can be observed due to $\mathrm{Al}_{2} \mathrm{O}_{3}$ content at $\mathrm{Al}-\% 20 \mathrm{Al}_{2} \mathrm{O}_{3}$ XRD results (Figure 13).

Figure 12. XRD patterns of the $\mathrm{Al}-15 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ Powder Mixtures Milled for 30 Hours, 60 Hours, 90 Hours and 120 Hours.

Figure 13. XRD patterns of the $\mathrm{Al}-20 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ Powder Mixtures Milled for 30 Hours, 60 Hours, 90 Hours and 120 Hours.

3.3. BET Surface Area and Pore Size Results

Table 4 gives single point, BET surface area and pore size results for 120 hour milled Al and $\mathrm{Al}_{2} \mathrm{O}_{3}$ composite powders. Figure 14 summarizes the data graphically.

Table 4. BET, Single Point Surface Area and Pore Size Results.

	Single Point Surface Area $\left(\mathbf{m}^{2} / \mathbf{g}\right)$	BET Surface Area $\left(\mathbf{m}^{\mathbf{2}} / \mathbf{g}\right)$	Pore Size
(nm)			

As can be seen BET and single surface area values are higher than those of as-received Al and $\mathrm{Al}_{2} \mathrm{O}_{3}$. That significant change in surface area can be associated with decreasing particle size. Generally single point surface area results of the 120 hour milled specimens are close to each other.

\rightarrow Single Point Surface

Figure 14. Single and Bet Surface Area Change by Weight Ratio of $\mathrm{Al}_{2} \mathrm{O}_{3}$.
The highest BET surface area value belongs to $\mathrm{Al}-\% 5 \mathrm{Al}_{2} \mathrm{O}_{3}$ composite mixture in accordance with the lowest pore size value (Figure 15).

Figure 15. Pore Size Change by Weight Ratio of $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Acknowledgements

This research was supported by Erciyes University Scientific Research Projects Unit (EU-BAP) with the project number FBA-10-2994.

References

1. Suryanarayana, C. 2001. Mechanical alloying and milling. Progress in Materials Science, 46:1-184.
2. Suryanarayana, C., 2008. Recent developments in mechanical alloying. Reviews on Advanced Materials Science, 18:203-211.
3. Jiang, X., Trunov, M.A., Schoenitz, M., Dave, R.N., Dreizin, E.L., 2009. Mechanical alloying and reactive milling in a high energy planetary mill. Journal of Alloys and Compounds 478:246-251.
4. Zhang, B.Q. Lu, L., ,Lai, M.O. 2003. Physica B, 325:120-129.
5. Sivasankaran, S., Sivasprasad, K., Narayanasamy, R., Kumar Iyer, V., 2010. An investigation on flowability and compressibility of AA 6061100 - $\mathrm{x}-\mathrm{x}$ wt.\% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technology 201:70-82.
6. Smagorinski, M.E., Tsantrizos, P.G., Grenier, S., Cavasin, A., Brzezinski, T., Kim, G., 1998. The properties and microstructure of Al-based composites reinforced with ceramic particles, Materials Science and Engineering A 244 (1): 86-90.
7. Arik, H., 2008. Effect of mechanical alloying process on mechanical properties of $\alpha-\mathrm{Si} 3 \mathrm{~N} 4$ reinforced aluminum based composite materials. Materials and Design 29: 1856-1861.
8. Tekmen C., Ozdemir, I., Fritsche, G., Tsunekawa, Y., 2009. Structural evolution of mechanically alloyed $\mathrm{Al}-12 \mathrm{Si} / \mathrm{TiB} 2 / \mathrm{h}-\mathrm{BN}$ composite powder coating by atmospheric plasma spraying. Surface \& Coatings Technology 203:2046-2051.
9. Tavoosi, M., Karimzadeh, F., Enayati, M.H., Heidarpour, A., 2009. Bulk Al-Zn/Al2O3 nanocomposite prepared by reactive milling and hot pressing methods. Journal of Alloys and Compounds 475:198-201.
10. Cambronero, L.E.G., Sánchez, E., Ruiz-Roman, J.M., Ruiz-Prieto, J.M., 2003. Mechanical characterisation of AA7015 aluminium alloy reinforced with ceramics, Journal of Materials Processing Technology 143-144: 378-383.
11. Prabhu B., Suryanarayana C., An L., Vaidyanathan R., 2006. Synthesis and characterization of high volume fraction $\mathrm{Al}^{-} \mathrm{Al}_{2} \mathrm{O}_{3}$ nanocomosite powders by high-energy milling. Materials Science and Engineering A, 425:192-200.
12. Wan-Li, G., 2006. Bulk Al-SiC nanocomposite prepared by ball milling and hot pressing method. Trans. Nonferrous Met. SOC. China 16:398-401.
13. Nie, C., Gu, J., Liu, J., Zhang, D., 2008. Investigation on microstructures and interface character of B4C particles reinforced 2024Al matrix composites fabricated by mechanical alloying. Journal of Alloys and Compounds 454:118-122.
14. Kubota, M., 2010. Solid state reaction in mechanically milled and spark plasma sinteren Al$\mathrm{B}_{4} \mathrm{C}$ composite materials. Journal Of Alloys And Compounds, 504: 319-322.
15. Wang, J., 2008. Mechanical alloying of amorphous Al- SiO_{2} powders. Journal of Alloys and Compounds 456:139-142.
