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Abstract. With the recent increase in data online, discovering meaningful opportunities can be 

time-consuming and complicated for many individuals. To overcome this data overload 

challenge, we present a novel text-content-based recommender system as a valuable tool to 

predict user interests. To that end, we develop a specific procedure to create user models and 

item feature-vectors, where items are described in free text. The user model is generated by 

soliciting from a user a few keywords and expanding those keywords into a list of weighted 

near-synonyms. The item feature-vectors are generated from the textual descriptions of the 

items, using modified tf-idf values of the users’ keywords and their near-synonyms. Once the 

users are modeled and the items are abstracted into feature vectors, the system returns the 

maximum-similarity items as recommendations to that user. Our experimental evaluation 

shows that our method of creating the user models and item feature-vectors resulted in higher 

precision and accuracy in comparison to well-known feature-vector-generating methods like 

Glove and Word2Vec. It also shows that stemming and the use of a modified version of tf-idf 

increase the accuracy and precision by 2% and 3%, respectively, compared to non-stemming 

and the standard tf-idf definition. Moreover, the evaluation results show that updating the user 

model from usage histories improves the precision and accuracy of the system. This 

recommender system has been developed as part of the Agnes application, which runs on iOS 

and Android platforms and is accessible through the Agnes website. 

1. Introduction 

With a world of exponential growth of online information, finding useful data can be surprisingly 

difficult [1]: there are too many options for users to assess, sort through, and find the ones most 

relevant to their interests. To remedy the information overload, recommender systems could be a 

valuable tool for online users [1]. 

Recommender Systems or Recommendation Systems (RSs) are a subclass of information filtering 

systems that collect information on the preferences of users for a set of items such as movies, songs, 

books [2, 3]. RS might use different user information such as age and nationality, or social information 

such as followers, followed, tweets, and posts [2]. RSs compare the user’s information to available 

items against reference characteristics in order to find recommendations [1]. Generally, a 

recommendation system compares the user profile to some reference attributes to predict the ‘rating’ 

that a user would give to an item that has not been seen by the user [1]. 

Generally, the recommender systems are classified into the following three categories: 

http://creativecommons.org/licenses/by/3.0


2

1234567890

AIAAT 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 261 (2017) 012017 doi:10.1088/1757-899X/261/1/012017

 

 

 

 

 

 

 Collaborative recommendation systems: These approaches recommend the items based on the 

similarity of tastes and preferences between users using a utility matrix [4, 5].  

 Content-based recommendation systems: These approaches recommend the items based on the 

description of the item and a profile of the user’s preference and history [6-10]. 

 Hybrid recommendation systems: These approaches combine collaborative and content-based 

methods to recommend some items to the users [11, 12]. 

Since the content-based systems are designed mostly to recommend text-based items [6], the rest of 

this subsection will focus on reviewing of some text-content-based recommender systems. Recently, 

considerable research has been done in the field of text-based recommendation systems. Gu et al. [7] 

proposed a method to measure the similarity between two pieces of text using cosine similarity of the 

two bags of words, where each word is weighted by its tf-idf, and they applied this method on 

LinkedIn job data. A similar method has been proposed by Philip et al. [8] but for digital libraries. 

Also, Lak et al. [9] proposed an article recommendation system that uses tf-idf and word2vec for 

converting each article to a feature-vector. Some more comprehensive notion of document relevance 

than bags-of-words are proposed in [13, 14]; they extract a wide variety of content-based features to 

characterize non-linguistic aspects of the audio such as speaker, language, gender, and environment. In 

[13], authors use Glove for feature extraction and using them into CNN. 

Although hybrid recommendation systems might provide higher performance, the collaborative RS 

component needs sufficient rated items to create the utility matrix. However, since often there is not 

enough rated items in exclusive communities for creating the utility matrix, this paper proposes a 

novel text-content-based recommendation systems for recommending some items (e.g. college events) 

to users (e.g. students). By considering the unstructured text content of the items, we convert the 

content of these items to some meaningful feature-vectors by computing a modified version of tf-idf 

on some specific pre-processed words. Finally, we find the similarity between feature-vectors using 

cosine measurement. The details of the proposed method are presented in the next section. 

The rest of this paper is organized as follows: The proposed recommendation system will be 

explained in Section 2. In Section 3, experiments will be presented and analyzed. The paper concludes 

in Section 4 with a discussion of the results achieved and some suggestions of lines of future work in 

the field.  

2. Proposed recommendation system  

In this section, we propose a novel content-based recommendation system to increase the user 

engagement in exclusive communities. In the content-based recommender systems, the 

recommendation decisions are made based on the item content and the user content. In our method, 

items are activities that take place at a specific time and specific place, and described in free text, like 

the following item describing an event in a college community: 

 Event Title, e.g.,  “Smithsonian American Art Museum Highlights Tour” 

 Event Description, e.g., “This highlights tour of the museum's collection may include highlights 

of the temporary exhibitions. Location: F Street Lobby.”  

 Event Tags, e.g.,  Art, Museum 

Also, the user content includes a few keywords that are solicited from a user and that represent 

his/her interests, hobbies, and needs such as Painting, Cooking, Fitness and Traveling. The following 

gives the main processes of our recommendation system:  

A. Creating the initial user model for each new user based on keywords from the user. 

B.    Updating the user model based on user history (negative and positive items). 

C.    Recommending some new matched items to the user based on his/her model.   

Each of the above processes will be explained and illustrated in the following sections. 

2.1. Creating the initial user model  

Based on the targeted community, each user has some interests, and the intensity of interests should be 

quantified. For example, if a user is very interested in “sport”, we model it as {sport: 5}, or if a user is 
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not interested in “sport”, we model it as {sport: -2}, so these numbers reflect the intensity of user 

interest. 

In this section, we introduce the process of creating the initial user model; an array of {word: 

weight} pairs. This array will be created based on the keywords provided by the user. 

The user model includes two types of word: the keywords that are provided by the user directly; 

and words that are the near-synonyms of those keywords. The near-synonyms of a keyword are the 

words that are synonymous or similar (in meaning) to the keyword.  The number of near-synonyms of 

a keyword is a parameter (S) that is set before creating the initial user model. 

Regarding the keyword weight, we assign initially a constant       The weight of a near-synonym 

of a keyword (             ), is a number between 0 (exclusive) and 1 (inclusive), where higher 

weights signify more similarity. These near-synonym weights are computed by the near-synonym 

generator such as Glove. For example, if a user provides “sport” and “technology” as keywords, and 

we take      and       , then the process of creating the initial user model is: 

1) Collecting  =5 near-synonyms of the “sport” and “technology” keywords as shown in Table 1: 

Table 1. Near-synonyms of the “sport” and “technology” keywords. 

near-synonyms of “sport”: athletics football rowing racing wrestling 

             : 1.0 1.0 0.9 0.9 0.8  

near-synonyms of 

“technology”: 

engineering IT application business technological 

             : 0.8 0.8 0.6 0.5 0.5 

2) Creating the initial user model by computing the union of all keywords and their near-

synonyms. If there is a duplicated word, use the highest weight among all duplicates as shown 

in Table 2. 

Table 2. A sample initial model based on “sport” and “technology” keywords. 
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Weight: 2.0 1.0 1.0 0.9 0.9 0.8 2.0 0.8 0.8 0.6 0.5 0.5 

2.2. Refining the user model and finding top recommended items for users 

In this section, we will explain how to refine the user model and find the top   matched items for each 

user. From the viewpoint of having useful information, we suppose that the content of each item has 

different textual parts; we call each part a data field. For example, an event item in a college 

community might have three different data fields as Event Title, Event Description and Event Tags, 

and each data field has a different amount of useful information, which is called the significance 

weight of the data field. The significance weights are parameters in our system, set at configuration 

time of the RS.  

To find the top   matched items, the following steps are performed: 

1) Refine the user model into a model UserRM as follows: 

a. Calculate the lemmatized and/or stemmed versions of the initial/updated user model 

and call the resulting model ModelL and/or ModelS 

b. For each keyword or near-synonym, remove the last letter of the word if the word 

ends with ‘e’, ‘y’ or ‘i’ based on the following conditions: 

i. After lemmatizing, if a word ends with ‘e’ or ‘y’, remove the last letter  
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ii. After stemming, if a word ends with ‘i’, remove the last letter  

c. We allow lemmas and stems of length at least 3 letters. Therefore, after performing 

steps 1.a and 1.b, remove all words of length 2 or less from ModelL and ModelS  

d. If we only use the lemmatized version of the user model, set UserRM = ModelL  

e. If we only use the stemmed version of the user model, set UserRM = ModelS  

f. If we use both lemmatized and stemmed versions, set  UserRM to be the union of 

ModelL and ModelS  

g. In all the above cases, if we have a duplicated word, we should keep only one copy of 

it and use the highest weight among all duplicates as the word weight  

2) Let    be the weight vector in e UserRM  

3) For each item i, calculate the similarity    between the item feature-vector    and user weight 

vector    as follows: 

a. For each data field j with significance weight       : 

i.       := the tf-idf for the j
th
 data field of the item for the words that we have 

in the UserRM;  

b. Calculate the item feature-vector    by weighted summation over all data fields:  

                  
                       
                                 (1) 

c. Calculate    as the similarity between    and   ; (similarity measures will be 

addressed later) 

4) Sort all items based on calculated  ’s in decreasing order. 

5) Select top   items. 

To make the above processes clear, we illustrate them with an example: Consider the initial user 

model as shown in Table 2, and using stemming for Step 1.a. Also, suppose that the target community 

has items with three data fields. 

In this example, we use the stemmed version of the user model for creating UserRM. Based on the 

mentioned user model, ModelS will be changed as shown in Table 3. In this table, for each step, the 

cells which were affected by this step are colored in gray. 

Table 3. Refining the user model based on the initial model of Table 2. 
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Weight 2.0 1.0 1.0 0.9 0.9 0.8 2.0 0.8 0.8 0.6 0.5 0.5 

Finally, Table 4 shows the refined model UserRM. 

Table 4. Refined model on the initial model of Table 2. 

   U
se

r
R

M
 

w
o

rd
s: 

sp
o

rt 

ath
let 

fo
o

tb
al 

ro
w

 

race 

w
restl 

tech
n
o

lo
g
 

en
g

in
 

ap
p

lic 

b
u

s 

UserRM words vector (  ): 2.0 1.0 1.0 0.9 0.9 0.8 2.0 0.8 0.6 0.5 

Now, suppose we have 3 different college events as items. The first one is about honoring a 

football team, the second item is about course registration, and the last one is about using technology 

in health. The calculated tf-idf of each mentioned item for UserRM words are as mentioned in Table 5.  

Table 5. Calculated tf-idf for UserRM words for three items. 

UserRM words: sport athlet footbal row race wrestl technolog engin applic bus 

 

item 1 

        0 1.70 1.0 0 0 0 0 0 0 0 

        2.60 3.40 2.0 0 0 0 0 0 0 0 

        1.30 0 1.0 0 0 0 0 0 0 0 

 

item 2 

      : 0 0 0 0 0 0 0 0.50 1.30 0 

        0 0 0 0 0 0 0 0 0 0 

        0 0 0 0 0 0 0 0 0 0 

 

item 3 

        0 0 0 0 0 0 0.82 0 0 0 

        1.30 0 0 0 0 0 2.46 0 0 0 

      : 0 0 0 0 0 0 0 0.50 0 0 

If we consider           ,            and           , then the item vector    of these three 

items are given in Table 6. 

Table 6. Calculated item vector    for above three items. 

Final words sport athlet Football Row Race Wrestl technolog engin applic bus 

S 1 3.64 4 . 4 2 3 . 8 0 0 0 0 0 0 0 

S 2 0 0 0 0 0 0 0 0 . 5 1 . 3 0 

S 3 1.04 0 0 0 0 0 2 . 7 8 8 0 . 6 0 0 

Now, we can calculate the similarity between each item vector    and user vector   . To calculate 

the similarity, we can use any similarity measure such as the cosine similarity that makes more sense 

for our problem. If               and               are two n-dimensional vectors, then the 

cosine similarity between these two vectors,            is represented using a dot product and 

magnitude as: 

                          
   

      
   

     
 
   

    
  

           
   

   
                                    (2) 

Based on above formula, the similarity between    and each    will be: 
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                                                 0.23;                      0.73 

Finally, if the number of desired recommendations is   , then we will recommend to the user 

the two items with the top    values, namely, item 3 and item 1. 

2.3. Updating the user model (Learning process) 

In this section, we introduce a method for updating the user model based on his/her history. Each user 

has some history data, including some negative and positive samples, where the negative samples are 

the items that the system recommended but the user did not like, and the positive samples are the items 

that the user liked. The process of updating the user model involves two major steps: 

1) Updating the user model words.  

2) Updating the user model weights. 

2.3.1. Updating the user model words. In the previous section, we introduced how to create the initial 

user model for each user. In this section, we explain how our method updates the user model based 

on user history. Consider the sample initial user model as shown in Table 2. 

For updating the user model words, we just need to add whatever words in all other users’ models 

that do not exist in the current user model. We also consider weight=0 for any newly added word. For 

example, consider the above-mentioned user model and some other words from other users’ models 

including “art”, “dance”, “artwork”, “painting”, “sculpture” and “artistry”. Then, Table 7 shows the 

new user model. 

Table 7. Updated model of the initial user model Table 2. 
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2
.0

 

0
 

0
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0
 

0
 

In the next section, we describe how we can update the weights of the created model. 

2.3.2. Updating the user model weights. The process of updating the user model weights is: 

1) Let the current user model be     which is the output of the previous step (Updating the user 

model words). 

2) For each rated item Q: 

a. Calculate the model of Q as   (explained in the next paragraph) 

b. If Q was labeled as a negative sample, then             

c. If Q was labeled as a positive sample, then             

Now, we explain how we can calculate the item model   . This process is similar to the process of 

finding top items. However, there are some differences. Consider a positive or negative item Q: 

a. For each data field j with significance weight       : 

i.       := the tf-idf for the j
th
 data field of item Q for the words that we have in 

the updated user model;  

b. Calculate the item vector    by weighted summation over all the n data fields:  

                    
 
                                                     (3) 

3. Performance Evaluation 
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In this section, we evaluate experimentally the performance of our content-based recommendation 

system and various design decision choices. To do so, the college community is selected as a good 

sample of data-overwhelmed exclusive community to be used as a testbed. Therefore, our goal is to 

recommend some college events to students. All data that we used in these experiments is collected 

from the George Washington University website. However, we needed some of this data to be labeled 

by humans so we could compare the result of our method with labeled data.  

To obtain this labeled data, we provided 10 different workbooks. Each workbook had 30 events. Then 

we gave workbooks to ten different users and asked them to provide: 

1) Some keywords that indicate their hobbies, activities, skills, and issues that they might be 

interested in. 

2) 10 events out of the 30 provided, that are more interesting to them. 

3.1. Difference between stemming and lemmatizing 

As we mentioned before, words might be in plural forms or even in other forms. To convert all forms 

of a word to the same word, we can use stemming or lemmatization. For a single input word, these two 

processes might result in different forms of the word. For example, consider word “technology”; the 

stemming process converts it to “technolog” and the lemmatizing process converts it to “technology”.    

In the first experiment, we are going to compare the following four alternatives: Original words, 

Stemmed words, Lemmatized words and, Union of Stemmed and lemmatized. 

Note that the process of removing ‘e’, ‘y’ and ‘i’ letters from the end of the words is not performed 

in this experiment, but it will be carried out in the second experiment. Table 8 shows the results of 

matching for the four above situations. As you can see, using stemming produces higher precision and 

accuracy. 

Table 8. Evaluation of our RS for when different versions of the words are used in calculations. 

Method Precision Accuracy 

Original words 0.66 0.77 

Stemmed words 0.73 0.82 

Lemmatized words 0.7 0.80 

Union of Stemmed and Lemmatized words 0.7 0.80 

3.2. Difference between keeping or removing ‘e’, ‘y’ and ‘i’ letters 
In the course of this research, we found that removing the letters ‘e’ and ‘y’ from the end of 

lemmatized words could improve the efficiency of the method. The same improvement would be 

happened if we remove letter ‘i’ from the end of stemmed words. In the next experiment, we compare 

the performance of our method for when ‘e’, ‘y’ and ‘i’ are removed from the end of stemmed words 

vs. when they are not removed. 

Table 9. Evaluation of our RS for when we use the process of removing ‘e’, ‘y’  

and ‘i’ endings and for when we do not remove them 

 Precision Accuracy 

Removing ‘e’ and ‘y’ (after lemmatizing) 0.72 0.81 

Keeping ‘e’ and ‘y’ (after lemmatizing) 0.7 0.80 

Removing ‘i’ (after stemming) 0.75 0.83 

Keeping ‘i’ (after stemming) 0.73 0.82 

As Table 9 shows, based on which version of the words (stemming or lemmatizing) is used in the 

previous step, removing ‘e’, ‘y’ and ‘i’ improves precision and accuracy of our method. Therefore, for 

the rest of the experiments, stemming will be used, and the letter ‘i’ will be removed from the end of 

the stemmed versions of words. 
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3.3. Difference between binary calculation or frequency calculation 

As mentioned before, we used tf-idf for creating the user and item vectors. Actually, the tf-idf metric 

has two parts: term frequency (  ) and inverse document frequency (   ): tf-idf =       . In some 

situation, it’s better to binarize   , that is, set              and keep      otherwise: 

tf-idf   
                   

                    
                                                            (4) 

In this experiment, we want to evaluate our method for two alternatives: 

 Frequency calculation: Calculating tf-idf based on its common definition.  

 Binary calculation: Calculating tf-idf based on the binarized tf. 

As you can see from the Table 10, the modified tf-idf method results in better precision and 

accuracy. We will use binary tf calculation in the remainder of the experiments. 

Table 10. Evaluation of our RS for when the original definition of tf-idf 

 is used and when the binarized tf is used. 

 Precision Accuracy 

Frequency calculation 0.75 0.83 

Binary calculation 0.78 0.85 

3.4. Difference between different vector similarity measures 

As we mentioned before, we should use a good similarity measure for computing the similarity 

between user vector and item vector. In the next experiment, we evaluate our method based on using 

different similarity measures. We compare four well-known similarity measures, namely, dot-product, 

cosine, Euclidean, and Manhattan. Table 11 shows the performance results. 

Table 11. Evaluation of our RS for when we use different similarity measures. 

Method Precision Accuracy Method Precision Accuracy 

Euclidean 0.62 0.75 Dot product 0.71 0.81 

Manhattan 0.59 0.73 Cosine 0.78 0.85 

As you can see from Table 11, the cosine similarity measure resulted in the highest precision and 

accuracy. Therefore, we will use this measure for calculating the similarity between two vectors. 

3.5. Comparison of our method with some other methods 

In this experiment, we compare our method with the following three methods of generating a feature-

vector from text content. 

1) TF/IDF,  

2) Word2vec using Google pre-trained model [15] 

3) The glove method using [Wikipedia 2014 + Gigaword 5] model [16].  

Before presenting the results of this experiment, we explain how the last two above methods finds the 

top N recommended items for users: 

 Word2vec Google trained model: Word2vec generates a vector for each word in an item text. 

The vectors of all the words in the text are added to create the feature of the item text.  

 The glove method using [Wikipedia 2014 + Gigaword 5] model: It is similar to word2vec 

except that it uses different training algorithms.  

All the above-mentioned methods including our method use the cosine measure for calculating the 

similarity between the user model and the item feature-vectors, and recommending the top N 

recommended items. In addition to the above methods, we compare the result of our method with 

UMBC phrase/sentence similarity service which is a well-known semantic textual similarity system. It 

gets two texts as input parameters and returns a real number as output which indicates the semantic 

similarity value between the two input texts. To calculate the semantic similarity between user 
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interests and items, we feed the user keywords and the items text content as the first and second inputs 

of UMBC semantic similarity service respectively. Table 12 shows the result of comparison between 

our method and the above methods: 

Table 12. Comparison between our method and some other methods. 

Method Precision Accuracy Method Precision Accuracy 

Our method 0.78 0.85 Glove 0.68 0.79 

TF/IDF 0.58 0.72 UMBC 0.73 0.82 

Word2vec 0.67 0.78    

As you can see in table 12, although some models like the Google pre-trained model and the Glove 

pre-train model are strong, our method results in the best precision and accuracy. The reason for this is 

that these models are really general and cover so many words in the English language, whereas our 

problem is very specific and so our model only covers restricted vocabulary related to our problem, 

which leads to better results. 

3.6. Comparison of our method before and after updating the user model 

In this last experiment, we show how the updating process could improve the performance of our 

method. Table 13 shows the result of this experiment. As you can see, the precision and accuracy have 

been improved from 0.78 and 0.85 to 0.81 and 0.87 respectively.  

Table 13. Evaluation of our method before and after training. 

 Precision Accuracy 

Before training 0.78 0.85 

After Training  0.81 0.87 

4. Conclusion and future work  

To overcome the data overload issue in recommendation applications, we proposed a novel text-

content-based recommendation system and optimized it by considering different alternatives and 

different decision choices. The resulting system uses a new specific procedure to generate the user 

model and convert the text content of the community items to a meaningful feature-vector. The 

user model is generated by soliciting from a user a few keywords that represent his/her interests, 

and expanding those keywords into list of weighted near-synonyms. Since words might be various 

morphological and/or syntactical forms, we normalize all the forms of a word to the same word 

using stemming and/or lemmatization, and then remove ‘e’, ‘y’ and ‘i’ from the end of 

stemmed/lemmatized words. The item feature-vectors are generated from the textual descriptions 

of the items, using modified tf-idf values of the users’ keywords and near-synonyms. Then by 

computing the cosine similarity between user and item feature-vectors, the items that best match 

the user’s interests are recommended.  

We tested the proposed method on a college community to recommend college events to 

students based on their interests. Experimental results show that stemming and removing ‘i’ letters 

from end of stemmed words increase the accuracy and precision significantly over any other 

combination (or lack) of stemming and lemmatization, that binarized-tf tf-idf is superior to non-

binarized tf-idf, that the cosine similarity measure is superior to other similarity measures, and 

that model training (i.e., learning from past performance) improves the performance of the system. 

Also, we compared our system with some well-known methods like Glove and Word2Vec for 

creating the feature-vectors for text content, and found that our proposed procedure (of creating 

the user and item feature-vectors) resulted in highest precision (78%) and accuracy (85%) for our 

application among those competing methods.  
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As mentioned before, the hybrid recommendation systems could improve performance; 

however, to create the collaborative part of it, there need to be many pre-rated samples available. 

Currently there is no such data, but once there is, creating a collaborative or hybrid 

recommendation system will likely improve the performance of the proposed method. Also, 

creating and training a more knowledgeable model for computing more accurate near-synonyms 

will definitely improve the accuracy of recommendations. 
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