This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Torsional Restraint Problem of Steel Cold-Formed Beams Restrained By Planar Members

, and

Published under licence by IOP Publishing Ltd
, , Citation Ivan Balázs et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 245 032057 DOI 10.1088/1757-899X/245/3/032057

1757-899X/245/3/032057

Abstract

The effect of continuous or discrete lateral and torsional restraints of metal thinwalled members along their spans can positively influence their buckling resistance and thus contribute to more economical structural design. The prevention of displacement and rotation of the cross-section results in stabilization of the member. The restraints can practically be provided e.g. by planar members of cladding supported by metal members (purlins, girts). The rate of stabilization of a member can be quantified using values of shear and rotational stiffness provided by the adjacent planar members. While the lateral restraint effected by certain shear stiffness can be often considered as sufficient, the complete torsional restraint can be safely considered in some practical cases only. Otherwise the values of the appropriate rotational stiffness provided by adjacent planar members may not be satisfactory to ensure full torsional restraint and only incomplete restraint is available. Its verification should be performed using theoretical and experimental analyses. The paper focuses on problem of steel thin-walled coldformed beams stabilized by planar members and investigates the effect of the magnitude of the rotational stiffness provided by the planar members on the resistance of the steel members. Cold-formed steel beams supporting planar members of cladding are considered. Full lateral restraint and incomplete torsional restraint are assumed. Numerical analyses performed using a finite element method software indicate considerable influence of the torsional restraint on the buckling resistance of a steel thin-walled member. Utilization of the torsional restraint in the frame of sizing of a stabilized beam can result in more efficient structural design. The paper quantifies this effect for some selected cases and summarizes results of numerical analysis.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.