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Abstract. The reliability models of statically indeterminate steel trusses are analysed in this 
paper. The plane trusses are considered. For analysed structures types of reliability model are 
determined. Identification of system reliability is based on studies on the transformation from 
the safe structural system into the geometrically variable system (mechanism). These researches 
intended to determine the kinematically admissible failure mechanisms which contain minimal 
critical sets of elements. For analysed truss the formula setting out the number of mechanisms 
for any number of repeatable sections is determined. To identify the mechanism, spectral analysis 
of the linear stiffness matrix is used. This stage of the study, in conjunction with consideration 
of static loads, allows to determine the minimum critical set of rods corresponding to the most 
probable scenario of the structural damage. For these analysis the computer program based on 
the finite element method has been created within the Mathematica environment. 

1.  Introduction 
The safety and reliability of structures are very important in the design process and on the operation 
stage during the lifetime of a structure. Steel trusses among the most important and the simplest 
structures. The most dangerous situation for trusses is a damage of rods converting truss into mechanism 
causing a global damage of the system.  

The subject of reliability analysis is to determine the probability of failure, which is understood as 
exceeding ultimate limit state [1-5]. System analysis in ultimate limit state of rod structures, and 
consequently identification of reliability system, is based on studies on the transformation the safe 
structural system into the mechanism. These research are intended to determine kinematically 
admissible failure mechanisms (KAFM) which contain minimal critical sets of elements (MCSE) [1,4,6-
8]. MCSE is a collection which is characterized by the property that if only one element is operable, the 
entire system is operable – the structure is able to transfer acting loads. Exhaustion of the load of all the 
elements included in the causative MCSE makes the structure is converted into the geometrically 
variable system.  

Reliability analysis of structural system consists of identification of reliability models and estimation 
of failure probabilities of individual modes and the overall system. In this paper the reliability models 
of statically indeterminate plane trusses are constructed. This theme is very important because the 
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probability of failure depends on the reliability model of structures. For these analysis the computer 
program based on the finite element method has been created within the Mathematica environment. This 
stage of the study, in conjunction with consideration of static loads, allows to determine the minimum 
critical set of rods corresponding to the most probable scenario of the structural damage. 

2.  Methods and Theory 

2.1.  Kinematically admissible failure mechanisms 
To evaluate the reliability of the system one of three types of reliability model (Figure 1): serial, parallel 
and mixed (parallel-serial or serial-parallel) system is used [1,3]. A system that is functioning if and 
only if all of its components are functioning is called a serial system (Figure 1a). For such structures the 
higher number of members, the lower load bearing capacity and reliability. The reliability of the serial 
system is calculated as follows: 

 



k

i
iS RR

1

 (1) 

where Ri is reliability of single element and k is the number of elements. The serial system is appropriate 
for structures that are statistically determinate. In this case number of minimal critical sets of elements 
is k (k MCSE) and the number of causative elements MCSE is l=1. 

Figure 1. Types of reliability model: a) serial system, b) parallel system, c) parallel-serial system, d) 
serial-parallel system 

A system that is functioning if at least one of its components is functioning is called a parallel (Figure 
1b). This system is appropriate for some structures that are statically indeterminate and the reliability is 
calculated as follows:  

 )1(1
1




k

i
iS RR . (2) 

For parallel system there is one minimal critical set of elements (1 MCSE) and number of causative 
elements MCSE is l=k.  

In the case of complex structures, there is usually a need to identify mixed systems, which are a 
combination of parallel and serial systems [4,8]. There are two basic systems as parallel-serial 
(Figure 1c) and serial-parallel (Figure 1d). The reliability for the first system is calculated as: 
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where m is the number of columns and k is the number of elements in columns. The reliability for the 
second system is calculated as: 
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where k is the number of rows and m is the number of elements in rows. These systems are characterized 
by multiple MCSE associated with KAFM. However in real structures, mixed systems are usually more 
complicated [6,9]. Some examples of the mixed systems are presented further in the paper.  

2.2.  Spectral analysis of linear stiffness matrix 
The spectral analysis is widely used in many areas of human investigations. Between others it is one of 
the most popular techniques in structural health monitoring procedures [10]. To identify mechanism of 
truss the spectral analysis of the linear stiffness matrix is used: 

 0qIK  = ) - ( L  (5) 

where KL is the linear stiffness matrix and q is displacement vector. The eigenvalues  of linear stiffness 
matrix describe the energy states of the model, while the eigenvectors describe the form of its own 
deformation. In the case when all the eigenvalues are greater than zero there are no movements. Zero 
eigenvalues are related to the finite or infinitesimal mechanisms, but in general the information from the 
null-space analysis alone does not suffice to establish the difference between them. The mechanism can 
be considered as an eigenvector related to zero eigenvalue. To establish if the mechanism is infinitesimal 
it is necessary to apply the nonlinear analysis with the use of geometric stiffness matrix [11].  

The program based on the finite element method application was created in Mathematica 
environment to identify possible mechanisms in the analyzed structure. The main functionality of the 
program was carry out spectral analysis for all possible trusses having removed given number of rods. 
To do that all possible combinations of given number of rods were generated and linear stiffness matrix 
was aggregated. Next the eigenvalues of created matrix were searched and zero eigenvalues was 
identified. If zero eigenvalue was found the structure was classified as the mechanism. As a result of 
calculations all possible not repeatable combinations of removed rods transforming truss to mechanism 
were generated.   

3.  Examples 
The subject of further qualitative analysis is supported, statically indeterminate plane truss which is 
composed of n repeatable sections (Figure 2). For this type of truss, the reliability and damage analysis 
are considered in some papers [3,12-15]. In the paper five types of trusses, of varying number of: 
repeatable sections n, nodes ln and rods le, are considered: 
 n=1, ln=4, le=6, 
 n=2, ln=6, le=11, 
 n=3, ln=8, le=16, 
 n=4, ln=10, le=21, 
 n=5, ln=12, le=26. 

Kinematically admissible failure mechanisms (KAFM) which contain minimal critical sets of 
elements (MCSE) are determined for each case. The reliability RS of studied systems is calculated 
assuming the same reliability of all the rods Ri=R. 
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Figure 2. Plane truss composed of n repeatable sections with ln nodes and le elements  

For a truss which is composed of one repeatable section (n=1) two (I, II) kinematically admissible 
failure mechanisms are determined (Figure 3) [3]. The I KAFM consists of seven MCSE with two 
causative elements (l=2) and it is divided into two KAFM: IA and IB. For IA KAFM the failure of any 
pairs of elements 1-4 results in the failure of the whole structure and for IB KAFM the structure failure 
occurs as the result of the failure of both cross-braces (5,6). The reliability  IBIAI RRR  for this 
mechanism is calculated as for the parallel-serial system (3). The II KAFM consists of one MCSE with 
two causative elements like I KAFM but it is a mixed system. The structural failure is caused by the 
failure of one of cross-braces (5,6) and one of the elements 1-4. Reliability is calculated as for the serial-
parallel system (4). All KAFMs are connected in a serial way. Therefore, the reliability of the whole 
truss is calculated as follows:  

IIIT RRR 1  

where: 

  7211 RRI  ;   42 111 RRRII   

For this truss number of mechanisms is 15 and all mechanisms consist of two causative elements. 

Figure 3. Kinematically admissible failure mechanisms for n=1 

For a truss which is composed of two repeatable sections (n=2) three kinematically admissible failure 
mechanisms are determined (Figure 4). Minimal critical sets of elements (MCSE) are presented in the 
Figure 4. In this case there are 45 mechanisms: 20 – which consist of two causative elements (l=2) (I-II 
KAFMs) and 25 – containing three causative elements (l=3) (III KAFM). The reliability is calculated in 
the same way as at the first example: 

IIIIIIT RRRR 2  

where: 

  8211 RRI  ;    232 111 RRRII  ;   RRRIII  111 5 . 
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Figure 4. Kinematically admissible failure mechanisms for n=2 

For a truss which is composed of three repeatable sections (n=3) four kinematically admissible failure 
mechanisms are determined (Figure 5). Minimal critical sets of elements (MCSE) are shown in the 
Figure 5. In this case there are 91 mechanisms: 26 – which consist of two causative elements (l=2) (I-II 
KAFMs), 40 – consisting of three causative elements (l=3) (III KAFM) and 25 – which consist of four 
causative elements (l=4) (IV KAFM). The reliability of the whole truss is calculated as follows: 

IVIIIIIIT RRRRR 3  

where: 

  10211 RRI  ;       22232 11111 RRRRII  ; 

     245 1111 RRRRIII  ;    252 111 RRRIV  . 

 

Figure 5. Kinematically admissible failure mechanisms for n=3 

For a truss which is composed of four repeatable sections (n=4) five kinematically admissible failure 
mechanisms are determined (Figure 6). Minimal critical sets of elements (MCSE) are shown in the 
Figure 6. In this case there are 153 mechanisms: 32 – which consist of two causative elements (l=2) (I-
II KAFMs), 56 – consisting of three causative elements (l=3) (III KAFM), 40 – which consist of four 
causative elements (l=4) (IV KAFM) and 25 – consisting of five causative elements (l=5) (V KAFM). 
The reliability of the whole truss is calculated as follows: 

VIVIIIIIIT RRRRRR 4  
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where: 

  12211 RRI  ;       222232 11111 RRRRII  ; 

          RRRRRRIII  1111111
24245 ;      2452 1111 RRRRIV  ; 

   253 111 RRRV  . 

Figure 6. Kinematically admissible failure mechanisms for n=4 

For a truss which is composed of five repeatable sections (n=5) six kinematically admissible failure 
mechanisms are determined (Figure 7). Minimal critical sets of elements (MCSE) are shown in the 
Figure 7. In this case there are 231 mechanisms: 38 – which consist of two causative elements (l=2) (I-
II KAFMs), 72 – consisting of three causative elements (l=3) (III KAFM), 56 – which consist of four 
causative elements (l=4) (IV KAFM), 40 – consisting of five causative elements (l=5) (V KAFM) and 
25 – which consist of six causative elements (l=6) (IV KAFM).  The reliability of the whole truss is 
calculated as follows: 

VIVIVIIIIIIT RRRRRRR 5  

where: 

  14211 RRI  ;       322232 11111 RRRRII  ; 

         224245 1111111 RRRRRRIII  ; 
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          2422452 1111111 RRRRRRIV  ;      2453 1111 RRRRV  ; 

   254 111 RRRVI  . 

 

  

Figure 7. Kinematically admissible failure mechanisms for n=5 

4.  Results and discussions 
The considerations performed in the paper allows to establish relations for every truss composed of n 
repeatable sections for 2n . The number of nodes ln and rods le is calculated as: 
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of minimal critical sets of elements for II KAFM is n, for III – n+1, for IV – n+2 etc., but the number of 
MCSE for I KAFM is calculated as: 

 I KAFM  13MCSE  nlel . (7) 

The formula setting out the number of mechanisms is computed as: 

 12  nn lmlmlmlm  (8) 

where 2lm is the number of mechanisms consisting of two causative elements (l=2), nlm  is the number 

of mechanisms which consist of n causative elements (l=n) and 1nlm is the number of mechanisms 
consisting of n+1 causative elements (l=n+1): 
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 (9) 

It is noticed that the equation (9)2 is not taken into account in the case of a truss which is composed 
of two repeatable sections (n=2). The first (I) and the second (II) KAFM consist of mechanisms 
determined by (9)1. I KAFM is always the parallel-serial system of two causative elements. II KAFM is 
the serial-parallel system in which the failure of one of cross-braces n repeatable sections and one of the 
another elements causes the failure of the whole structure. The n-th KAFM consists of mechanisms 
determined by (9)2 and (n+1)-th KAFM by (9)3. 

To illustrate proposed approach a truss which is composed of eight repeatable sections (n=8) is 
considered. The number of rods and nodes is respectively le=41 and ln=18. Nine kinematically 
admissible failure mechanisms which consist of 561 mechanisms are determined for this structure (Table 
1). The reliability of this truss may be calculated using the analysis presented for previous trusses. There 
is a certain repeatability which allows to determine reliability as: 

IXVIIIVIIVIVIVIIIIIIT RRRRRRRRRR 8  

where: 

  20211 RRI  ;       622232 11111 RRRRII  ; 

         524245 1111111 RRRRRRIII  ; 

          42422452 1111111 RRRRRRIV  ; 

          32432453 1111111 RRRRRRV  ;

          22442454 1111111 RRRRRRVI  ;

          2452455 1111111 RRRRRRVII  ;      2456 1111 RRRRVIII  ;

    257 111 RRRIX  . 
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Table 1. Kinematically admissible failure mechanisms for n=8 

KAFM 
Number of 

MCSE 

Number of 
causative 
elements 

Number of 
mechanisms

I 20 
2 56 

II 8 
III 7 3 120 
IV 6 4 104 
V 5 5 88 
VI 4 6 72 
VII 3 7 56 
VIII 2 8 40 
IX 1 9 25 

5.  Conclusions 
In the paper the reliability of plane trusses is considered. New strategy is presented to determine of the 
dominant failure paths and the structural system failure probability. The method allows to calculate the 
reliability for the statically indeterminate truss composed of n repeatable sections. Presented method 
consists of three steps: identification of reliability models and estimation of failure probabilities of 
individual modes and the overall system. To identification of reliability models kinematically admissible 
failure mechanisms which contain minimal critical sets of elements are determined. The spectral analysis 
of the linear stiffness matrix is used to identify mechanism. The problem is solved using the finite 
element method implemented in Mathematica environment. Basing on obtained results the universal 
relations on possible number of mechanism is determined for considered type of truss. 
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