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Abstract. Polylactic acid (PLA) is the most representative sustainable and bio-based polymer 

environmentally friendly that has a great potential to replace petroleum-based plastics. 

However, brittleness, low heat resistance, and slow crystallization limit the wide application of 

PLA. One of strategies to improve PLA properties is by reinforcing with microfibrillated 

cellulose (MFC). Unfortunately, the hydrophilic properties of MFC make it difficult to attain 

good dispersion in a hydrophobic PLA matrix. Therefore, modification of MFC was needed to 

increase its compatibility with PLA in the composite formation. In this experiment, MFC was 

modified with partial acetylation (degree of substitution: 1) and further grafted with lactide 

monomers through ring-opening polymerization using Sn(Oct)2 catalyst. The result of 

acetylation and grafting were verified by infrared spectra. Composites were prepared by 

mixing PLA (molecular weight of 200,000) and the modified MFC at 9:1 ratio through organic 

solvent method. Followed by 8 min-kneading and hot pressing at 180°C, the resulted 

composites were evaluated for their mechanical and thermal properties. Thermal 

characterization carried out using differential scanning calorimetry measurements showed that 

the presence of modified MFC increased the temperature of glass transition and accelerated 

the crystallization of PLA. Mechanical properties measurement showed that the presence of 

modified MFC enhanced the elongation at break (1.1 to 1.8%), tensile strength (14.9 to 25.7 

MPa), and modulus of elasticity (1.7 to 2.1 GPa). These results demonstrated that the modified 

MFC could extend the application of PLA in industry. 

 

 

 

1. Introduction 

In recent years, the concepts of green chemistry, green materials, and industrial ecology in the 

field of polymers have been developed. This concept aims to answer the environment problem and 

depletion of fossil oil resources. Polylactic acid (PLA) is one of the environmental-friendly polymers, 

which is versatile, made of renewable materials, energy and the production cost are low that can 

compete with other synthetic polymers. PLA is potential as an alternative substitution of petroleum-

based polymers in the industrialized world. By its nature, PLA has good mechanical properties that are 

easily used in the manufacture of technical fiber and films, extrusion and thermoforming, and 

injection molding. However, it has some weakness including fragile, low stability and heat resistance, 

http://creativecommons.org/licenses/by/3.0
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and the slow rate of crystallization. The weakness limits its industrial application [1]. Several studies 

reported that addition of microfibrillated cellulose (MFC) improved PLA properties [2][3]. 

In the application, MFC is used as filler in the PLA matrix. Its small size (10-9-10-6 m) makes 

this nanofiber more effective as reinforcing compared to other fibers [4] and it is potential as a 

reinforcing material in the automotive industry, buildings, computers, and other products. Thus the 

formation of MFC-reinforced composite can give them the advantage in terms of the physical, 

thermal, and mechanical [5]. However, MFC has hydrophilic properties that inhibits its dispersion in 

the PLA matrix, forming a hydrophobic aggregation of the MFC and irreversible agglomeration due to 

strong hydrogen bonds. This makes composite formed with a low thermal stability [1]. Several 

researches were conducted to improve MFC properties either by exploring more sources of MFC [6] 

or by converting MFC to Nanofiber Cellulose (NFC) [7]. Therefore, some chemical modifications 

should be carried out with the aim of improving compatibility. 

Partial acetylation in bacterial cellulose with a range of degree of substitution (DS) 0.04-2.77 

had been reported by Kim et al., (2002) [8]. The result showed that acetylation occurs on the surface 

of bacterial cellulose and does not damage the fiber morphology. Ifuku et al., (2007) [9] had modified 

the bacterial surface nanocellulose acetylated fibers with various DS. Acetylation is able to improve 

various properties of fibers, effectively reduce the hygroscopicity of the bacterial nanocellulose, and 

enhance compatibility with other hydrophobic materials such as PLA matrix. 

Another approach in reducing the hydrophilicity of MFC was reported by Goffin et al., (2011) 

[1]. The surface of nanocellulose was grafted with polyester matrix using ring-opening polymerization 

of L-lactide, followed by mixing PLA to form a composite. Toluene was used as a solvent and 

Sn(Oct)2 as a catalyst in the ring opening polymerization. Thermal property characterization of the 

composite indicated that such modification improves compatibility and also increases the strength of 

the composite. In preparing the PLA-MFC composite, Iwatake et al., (2010) [10] used 2 methods, 

namely direct mixing and blending in organic solvent. Based on the mechanical properties of the 

products, it was suggested that mixing in organic solvent gave a better composite than that prepared 

through direct mixing. 

This experiment aimed to improve thermal and mechanical properties of composite based on 

PLA and MFC through chemical modification to obtain a better homogeneity between the PLA and 

MFC. Partial acetylation allowed hydrophilic hidroxy groups at MFC structure partially substituted by 

acetyl groups that are hydrophobic, so that MFC could be compatible with hydrophobic materials such 

as PLA matrix. The acetylation product hereinafter was called MFC-acetate. The next process was 

grafting the MFC-acetate by employing lactide monomer. Lactide monomer was expected to grow at 
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the backbone structure of MFC. The final step was preparing some composite which was expected to 

have some thermal and mechanical properties improved. 

 

2. Materials and Methods 

2.1 Materials 

The materials used were MFC (Daicel Chemistry, Japan), lactide monomer (Sigma-Aldrich), Sn(Oct)2 

(Sigma-Aldrich) as polymerization catalyst, and PLA H-400 (Toyota).  

 

2.2 Acetylation of MFC 

Approximately 10 g wet MFC was squeezed using chamois until water seeps out. The sample was 

placed in a flask and 50 mL ethanol was added while stirring for 30 min. The suspension was then 

filtered using a suction means. The procedure was repeated by replacing ethanol with acetone and 

glacial acetic acid. After removing the free water, the sample was added dropwise an acid catalyst 

(CH3COOH:H2SO4 95-97% (v/v) = 100:1) as much as 12 mL and allowed to stand for 1 min. 

Furthermore, some more acetic anhydride was slowly added (15 mL). The suspension was stirred by 

glass rod until thickened, allowed to stand for 90 min (started when acetic anhydride was added). The 

acetylation process was stopped by adding mixture of 3 mL of glacial acetic acid:distilled water (2:1) 

and allowed to stand for 30 min (stirring at medium speed in order to mix evenly). Samples that had 

been acetylated MFC was then dispersed into 500 mL of distilled water by vigorous stirring. The 

product was then vacuum-filtered by Büchner funnel and washed with NaHCO3 1 N until there was no 

more CO2 bubbling out. The fiber was washed with distilled water until neutral (pH 6.5-7) and 

vacuum-filtered until water no longer dripping. Samples that had been acetylated were stored in 

tightly lid glass jar. 

 

2.3 Grafting on MFC-acetate by Lactide Monomer through Ring Opening Polymerization 

Samples of MFC-acetate that had been obtained previously (DS ± 1) were immersed in acetone and 

dried using toluene by centrifugation techniques. The samples were suspended in toluene in a three-

necked reaction flask, stirred, and purged with nitrogen. The reaction flask was immersed in a water 

bath and heated to 80 oC. Then, 1 g of L-lactide monomer (in hot toluene) was added to the reaction 

flask containing the MFC-acetate suspension. Sn(Oct)2 (2% of the monomer weight) was added 

through a sterilized needle to catalyzed the reaction. Polymerization was carried out for over 24 h, and 

stopped by adding a few drops of dilute HCl solution (0.1 M). Graft copolymerization products were 

obtained by precipitation in cold methanol and filtered. 
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2.4 Composite Preparation 

The double modified MFC (10% weight of the intended composite) was suspended in methanol for 15 

min and filtered. The ethanol was replaced by acetone and dichloromethane successively. Each 

inclusion process was repeated 3 times. In a separate beaker, PLA (90% of the intended composite 

weight) was dissolved in dichloromethane using a homogenizer to obtain a well-dispersed suspension. 

The suspension formed was stirred and the modified MFC was gradually added to the suspension at 

room temperature and kept stirring for 1 h. The blend of PLA/modified MFC in dichloromethane was 

spread out on a basin and evaporated in a fume hood at room temperature for 12 h followed by 

vacuum drying at 50 °C for 8 h. The composite layer was dried, weighed, and cut up (± 1 cm2). In the 

next process, the composite was kneaded using laboplastomil at 160 °C, at 40 rpm speed for 8 min. 

Finally, the composite was molded into thin sheets using hot pressed at 180 °C for 14 min (preheating 

6 min, pressing 3 min under 400 Pa, and cooling 5 min). 

 

 

3. Results and Discussion 

3.1 Microfibrillated Cellulose 

MFC is cellulose which has been acid-hydrolysed [1] and mechanically processed in homogenized 

high pressure and a small aggregate [13]. According to Chakraborty et al.,(2006) [14], MFC has 

reached 0.1-1 m fiber diameter and minimum length of 5-50 m. Based on morphological analysis 

using SEM (Figure 1) with a magnification of 1000× the fiber diameter was varied (111.7-157.9 nm), 

while the length is difficult to measure because each fiber is tangled in webs. 

Cellulose microfibril consists of crystalline and amorphous regions in interspersed proportion 

depending on cellulose source obtainment. In addition, this compound has a regular structure in the 

form of a linear polymer repeat unit due to β-D-glucopyranose are linked to each other through β (1-4) 

bonds. Two hydroxy groups in position C2 and C3 (secondary) and that in C6 (primary) create intra-

and intermolecular hydrogen bonds. Therefore, the cellulose fibers have high tensile strength and is 

insoluble in most solvents. Cellulose, and therefore, the MFC also shows strong hydrophilic character, 

as proven its moisture content as high as 90%. This strong hydrophilic character of MFC inhibits 

dispersion in the PLA matrix. 
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Figure 1. Morphology of MFC with 1000× magnification. 

 

3.2 Modified MFC 

Acetylation was meant to chemically modified MFC in order to alter certain properties based on their 

structure. In this study, the hydroxy groups on MFC was not completely acetylated, just sufficiently to 

render its compatibility with the hydrophobic PLA. Partial acetylation reaction in MFC-acetate can be 

evidenced by the degree of substitution (DS), as determined by titration techniques. 

The DS of MFC-acetate was approximately 1. However, Ifuku et al., (2007) [9] reported DS of 

0.2 to 0.6 did not alter cellulose crystallinity region significantly, the extent of hydrogen bonds 

between cellulose fibers only slightly reduced. In this experiment, DS <1 was not obtained, 

presumably due to the use of sulfuric acid as a catalyst in acetylation causing structural deformation of 

the MFC. This was evidenced by the dissolution of the MFC when mixed with acetic anhydride and 

sulfuric acid. The deformation caused the acetylation of cellulose structure did not only occur on the 

surface of cellulose but all layers of cellulose fibers. 

Analysis using FTIR spectrophotometer on neat-MFC, MFC-acetate, and MFC-acetic-lactic 

grafted (MFC-acetate-g-La) is shown in Figure 2 and Table 1. There is a typical absorption of 

cellulose at wavenumber 3236 cm-1 and wavenumber 1053 cm-1 belongs to –CO stretching on the 

cellulose ring. Furthermore, the intensity of the –OH absorption peak decreases and typical sharp 

absorption peak appears that belong to cellulose acetate, indicating –CO stretch (1759 cm-1) and acetyl 

–CO bend (1234 cm-1) [15]. The spectrum shows that the decrease in absorption intensity is due to 

partially substituted of the hydroxy groups by acetyl groups. 

The second step of modification was graft copolymerization with lactide monomer by ring 

opening polymerization techniques. The graft copolymer can produce copolymer that is similar to the 

main chain and the grafted monomer, so that through graft copolymerization, the polymer properties 

can be modified in accordance with the purpose and utilization. 

 



6

1234567890

Innovation in Polymer Science and Technology 2016 (IPST 2016) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 223 (2017) 012032 doi:10.1088/1757-899X/223/1/012032

 

 
 

Table 1. Infrared spectra of neat MFC and modified MFC 
MFC                                   MFC-asetat                         MFC-asetat-g-La 

 

Wave 

number(cm
-1

) 

 

Fungsional 

Group 

 

Wave 

number(cm
-1

) 

 

Fungsional 

Group 

 

Wave 

number(cm
-1

) 

 

Fungsional 

Group 

3236 O-H stretching 3630 O-H stretching 3527 O-H stretching 

2890 C-Hstretching 2947 C-Hstretching 2960 C-Hstretcing 

1650 O-Hbend 1759 C=Ostretching 1752 C=Ostretching 

1390 C-Hbend 1375 C-Hbend 1375 C-Hbend 

1053 C-Ostretching 1234 C-Oacetate 1235 C-Oacetate 

  1042 C-Ostretching 1047 C-Ostretching 

  608 C-Hbend 604 C-Hbend 

 
Covalent bonds between the main chain of the polymer grafts and ensure the permanence. Ring-

opening polymerization technique is a good technique for polymerization using monomers such as 

cyclic lactone and lactide. Result of grafting on MFC-acetate is presented in Figure 2. 

 

 

  Figure 2. Spectrum of neat MFC (a), MFC-acetate (b) and MFC-acetate-g-La (c) 

 

Figure 2 shows the absorption peaks are relatively similar to the spectrum of MFC-acetate, namely 

wavenumber 3527 cm-1 that belongs to ¬OH group, 1752 cm-1 belongs to ¬CO group, and 1235 cm-1 

belongs to ¬CO acetyl group [15]. There is a trend of declining peak intensity of the free ¬OH and 

increasing peak intensity of –CO acetyl group, showing that the lactide has been grafted on the MFC-

acetate backbone. 
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3.3 Analysis of Thermal Properties 

Thermal properties of composites in this study were characterized using DSC instrument 

applying heat microscopy (scanning of low temperature to high temperature) and produced a 

thermogram curve. The thermogram curve displays the glass transition temperature (Tg), 

crystallization temperature (cold state) (Tc), and melting temperature (Tm) of the material being 

tested. Figure 3 displays the thermogram curve of neat-PLA, PLA composite/MFC, and composite 

PLA / MFC-acetate-g-La, respectively. Based on the analysis of the thermogram third curve (Table 2) 

shows that the Tg of PLA / MFC-acetate-g-LA (54.38°C) higher than the Tg of neat PLA (52.81 °C) 

and PLA/MFC (49.33°C). The shift of temperature indicated that the PLA reinforced with modified 

MFC can increase Tg. Increasing Tg fairly well because when the composite was subjected to heat, 

the rubber phase change to a higher temperature so that it was more heat-resistant than neat-PLA. 

The increase was caused by when the PLA receives thermal energy, the polymer molecules is 

activated and induces vibrational and rotational motion. The presence of acetylated and lactylated 

MFC as filler reduced the flexibility of the molecular structure of PLA and inhibited the molecules 

vibration and rotation so that the high energy is required to achieve a Tg. In addition, Braun et al. [14] 

reported that the grafted-MFC formed percolation network on the filler particles that providing 

increase to Tg. Otherwise, the PLA/MFC (not modified) actually showed a reduction in the Tg. The 

phenomenon occur due to the unmodified MFC having incompatibility with PLA to form a weak 

interaction between the filler and the matrix, so that causing the Tg decline. 

Based on crystallinity data, Tc PLA/MFC-acetate-g-La (93.20°C) and PLA/MFC (94.01 °C) is 

lower than Tc of neat- PLA (97.60°C) (Table 1). This shows that the decrease in Tc PLA reinforced  

with MFC was able to crystallize faster than neat- PLA. This is due to MFC action as a nucleating 

agent [12]. However, Tc of PLA/MFC-acetate-g-La is higher than PLA/MFC. The difference proves 

that the modifications to the MFC is able to improve the compatibility between the PLA. Thus, the 

effectiveness of the MFC as a nucleating agent can be further increased when dispersed evenly in the 

PLA matrix. 

However, the melting data was not influenced by MFC as reinforcement in the PLA matrix. 

Based on data from Tm (Table 2), there was no significant decrease between Tm of PLA/MFC 

(168.29 °C) and Tm PLA/MFC-acetate-g-La (168.31°C) when compared with neat PLA Tm (168.35 

oC). In the application, the Tm peak effect, fast or slow the process of getting molten form. The lower 

the temperature, it is better because it is faster to get a discharge considering PLA products have a 

narrow temperature range up degraded. 

 

 



8

1234567890

Innovation in Polymer Science and Technology 2016 (IPST 2016) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 223 (2017) 012032 doi:10.1088/1757-899X/223/1/012032

 

 
 

Table 2. Analysis of measurement results with DSC 

 

 Sampel Tg (oC) Tc (oC)Tm (oC) 

 Neat-PLA 52.81 97.60 168.35 

 PLA/MFC 49.33 94.01 168.29 

 PLA/MFC-acetate- 54.38 93.20 168.31 

 g-La     

 

 

Figure 3. Thermogram of DSC where the upper line is neat PLA, the middle line 

is PLA/MFC, and the lower line is PLA/MFC-acetate-g-La  

 

3.4 Analysis of Mechanical Properties 

Reinforcing effect of MFC modified on the PLA matrix demonstrated through testing of mechanical 

properties: the elongation at break, tensile strength, and modulus of elasticity. Results of the analysis 

on the mechanical properties of neat-PLA, PLA/MFC, and PLA/MFC-acetate-g-La are shown in 

Table 3. It’s known that the elongation break of modified or not modified sample showed no 

significant change, which is neat- PLA (1.18%), PLA/MFC (1.42%), and PLA/MFC-acetate-g-La 

(1.77%). However, it appeared that the presence of MFC as filler provides enhanced mechanical 

properties, although not real. This phenomenon occurs due to the interaction between MFC and PLA 

composite extend the point of deformation. 

MFC reinforcement effect seen in rigidity and tensile strength of the resulting composites. All these 

facts proved that the MFC was able to increase the strength of the PLA. This increase was due to 

percolation network; cellulose fibers act as filler to strengthen the structure and were able to keep the 

stiffness matrix of PLA [3]. In addition, fillers restrict the movement of the molecular chain of the 

amorphous PLA [15]. 
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Table 3. The result of mechanical strength test using UTM 

 

Sample 
Elongation at break 

(%) 

Tensile 

strength 

(MPa) 

Mod. 

Elasticity 

(GPa) 

PLA 1.1±0.2 14.9±0.3 1.7±0.2 

PLA/MFC 1.3±0.3 17.7±0.3 2.0±0.2 

PLA/MFC-    

Acetate-g-La 1.8±0.3 25.7±2.2 2.1±0.1 

 

However, dissolution of MFC on acetylation process was expected to affect strength of produced 

MFC-acetate and certainly have an impact on the composite strength of PLA/MFC-acetate-g-La. 

When MFC was soluble, it was suspected for structure deformation that makes hydrogen bonding 

between cellulose chains broken to form a space in the crystalline chain so that when the MFC-soluble 

is dispersed in water, the MFC that has not formed a tight crystalline structure as originally tough to 

prove it needs to be analyzed morphological crystalline using x-ray diffraction (XRD). The 

phenomenon was thought to be the cause of rigidity values PLA/MFC-acetate-g-La does not vary 

much with PLA/MFC. 

PLA/MFC-acetate-g-La had a rigidity and a higher tensile strength compared with PLA/MFC. This 

difference proves that the MFC which had been modified (acetylated and lactylated) had a better 

compatibility with the PLA matrix than unmodified MFC. It is caused when a composite accept load 

(energy), then the energy will first be accepted by the matrix and then be transferred to the fibers as 

filler through the interface field. Therefore, the ability of the interface in the field of energy transfer 

from the matrix to the filler play an important role on the mechanical strength of a composite. 

The good compatibility will form a large surface area of between matrix and filler so that the 

composite is able to transfer energy better. The presence of grafting in this study to increase the 

strength of a composite due to the formation of covalent bonds between the MFC and the grafted 

polymer chains [1] and will increase compatibility due to increased adhesion between the two bonds. 

In addition, the partial acetylation support grafting reaction in improving the strength of the composite 

produced. According to Braun et al., (2013) [16], limiting the degree of grafting on the MFC through 

partial acetylation process successfully form a network thereby increasing the rigidity and strength of 

the composite. 

 

4. Conclusions 

The reinforcement of modified MFC improved the thermal and mechanical properties of PLA 

composites. Thermal characterization carried out using differential scanning calorimetry 
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measurements revealed that the addition of modified MFC increased the temperature of glass 

transition and accelerated the crystallization of PLA. Furthermore, mechanical properties 

measurement showed that the addition of modified MFC enhanced the elongation at break from 1.1 to 

1.8%, tensile strength from 14.9 to 25.7 MPa, and modulus of elasticity from 1.7 to 2.1 GPa. Thus the 

MFC modified (acetylated) can improve the properties of PLA composites. 
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