Nanoneedles of Lanthanum Oxide (La$_2$O$_3$): A Novel Functional Material for Microwave Absorber Material

To cite this article: W A Adi et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 202 012066

View the article online for updates and enhancements.

Related content
- Microwave Dielectric Properties of Lossy Dielectric Composite Materials
 Young Joon An, Hirotake Okino, Takashi Yamamoto et al.
- LANTHANUM IN VARIABLE STARS IN CLASS N
 Roscoe F. Sanford
- Short range structure of lanthanum chloride oxychloride determined by EXAFS
 H Matsuura, S Watanabe, T Kanuma et al.
Nanoneedles of Lanthanum Oxide (La$_2$O$_3$): A Novel Functional Material for Microwave Absorber Material

W A Adi, S Wardiyati and S H Dewi

1Centre for Science and Technology of Advanced Materials, BATAN, Kawasan Puspiptek Serpong Tangerang Selatan Banten, Indonesia

Email: dwisnuaa@gmail.com

Abstract. Synthesis and characterization of La$_2$O$_3$ nanoneedles have been successfully carried out by using hydrolysis reaction with NH$_4$OH as a solvent. La$_2$O$_3$ was prepared from LaCl$_3$ solution. LaCl$_3$ was preheated on a hotplate and stirred by using a magnetic stirrer, then added solution of NH$_4$OH 1 M with the variation speed drops of 3 ml, 6 ml and 9 ml to obtain white precipitation La(OH)$_3$ until a pH of 9. Stirring was continued until 1 hour. A white precipitate formed is separated from the effluent by centrifugation method with 3000 rpm and neutral pH. Then, the precipitate was(182,311),(814,416)

1. Introduction
Rare earth metals consist of 15 elements in the lanthanide group from the periodic table, however, scandium (Sc) and yttrium (Y) can be categorized as rare earth metals the similarities in nature and also the existence in nature tend to be along with elements of the lanthanide. Rare earth metals in Indonesia are found in the mineral monazite which is associated minerals incorporated with lead and radioactive element [1-2]. Because as a by-product of tin processing results then only sold at very cheap prices, even at some points thrown away, whereas in the mineral contained rare earth elements having high sales value and much needed in some industries. The dominant elements of rare earth mineral contained in monazite are lanthanum (La), cerium (Ce), neodymium (Nd) and praseodymium (Pr) [3]. The economic potential of monazite previously into tin mining by-products can be increased as added value which is in line with their needs as large as the raw material of advanced industry, in addition to the China policy about export restrictions for the rare earth metals.

Recently, utilization of the rare earth metals is very spacious, especially in the development of high technology. Europium (Eu) is used for computer monitors, erbium (Er) for a cable of fibre optic, neodymium (Nd), samarium (Sm), gadolinium (Gd), dysprosium (Dy), and praseodymium (Pr) for permanent magnets, while lanthanum (La) has been applied widely as functional magnetic materials. There is much more utilization of LTJ which has not been replaced by another material yet [4-6].
An interesting case to be studied is the use of nanoparticles of lanthanum oxide as absorbing microwaves [7-10]. Lanthanum (La) is the lightest element in the lanthanide group, and has been widely studied in the form of oxides, hydroxides, and phosphates. Various chemical methods have been used to make nanostructures of lanthanum oxide. Synthesizing La(OH)$_3$ nanotubes has been succeeded through hydrothermal method. La(OH)$_3$ nanorods have been made through chemical methods. In addition, and a simple method to make La(OH)$_3$ nanowires has been reported[11-16].

This research will perform the synthesis of lanthanum oxide which focuses on the process of forming nanoneedles. The method used is a hydrolysis method. In addition, this section also discusses the factors that influence during the synthesis process namely pH value and temperature. So, it is expected to find the factors that play role important in controlling the morphology of these nanoneedles. Besides, this paper will present several challenges of scientific with respect to further investigation about microwave absorption capability at this material.

2. Experimental Method

Powders of La$_2$O$_3$ were synthesized by the hydrolysis method. The raw materials used were a solution of LaCl$_3$ and ammonia. The first stage of the process conducted for this synthesis was the solution of LaCl$_3$ was heated by using a hotplate at a temperature of 80 °C and stirred by using a magnetic stirrer with a speed of 70 rpm, then added with a solution of ammonia of 1 M by using a peristaltic pump with variations of drops speed of 3 ml/min, 6 ml/min and 9 ml/min for the deposition process up to reach a pH of 9. Stirring was continued for 1 hour. The third of white precipitate formed is separated from the effluent through the method of centrifugation at 3000 rpm until the pH back to neutral. Then the precipitate was dried in an oven at a temperature of 70 °C. After that, the precipitate furthermore was sintered in the electric chamber furnace at 1000 °C for 5 hours to obtain crystalline powder of La$_2$O$_3$ materials.

The reactions that occur during the hydrolysis process are as follows:

\[
\text{LaCl}_3 + 3\text{H}_2\text{O} + 3\text{NH}_3 \rightarrow \text{La(OH)}_3 + 3\text{NH}_4\text{Cl}
\]

\[
2\text{La(OH)}_3 \rightarrow \text{La}_2\text{O}_3 + 3\text{H}_2\text{O}\uparrow
\]

The particle morphology of La$_2$O$_3$ powder resulting from differences in drops speed of 3 ml/min, 6 ml/min and 9 ml/min was observed by using a transmission electron microscope (TEM) JEOL brand. Meanwhile, the phase identification of the three samples was characterized by using X-ray diffraction (XRD) Analytical Pan brand with CuKα radiation ($\lambda = 1.5406$ Å). The crystal structure analysis of the sample is calculated based on analysis by using the Rietveld method namely GSAS programs (general structure analysis system) to determine the crystal structure parameters of each sample and the presence of crystal growth in the hydrolysis process results [17]. The calculating electromagnetic wave absorption in this material was by using a vector network analyzer (VNA) with a frequency range of 8-12 GHz (X-band).

3. Results and Discussion
Figure 1. Morphology and phases analysis of La$_2$O$_3$ nanoparticle

At the beginning of this study, the nanoparticles morphology of La$_2$O$_3$ commercial product (standard) was observed to get a general idea about particle morphology of La$_2$O$_3$. This morphological observation using a transmission electron microscope (TEM) with a magnification scale of 50 nm is shown in Figure 1(a).

Figure 1(a) shows nanoparticles morphology of La$_2$O$_3$ standard in which polygonal solid shaped with particle sizes was around 200 nm. The interesting thing about the image that the polygonal shape is a basic form of nanoparticles La$_2$O$_3$ corresponding to the shape of this crystal structure. The measurement results of X-ray diffraction pattern of the standard La$_2$O$_3$ nanoparticles is shown in Figure 1(b).

(a) TEM image

(b) Refinement result of X-ray diffraction pattern

(a) Drops speed of 3 ml/min

(b) Drops speed of 6 ml/min
The refinement of XRD profile for La$_2$O$_3$ standard as shown in Figure 1(b) appears that the fitting X-ray diffraction pattern has a very good fitting quality based on the criteria of fit (Rwp) and goodness of fit (χ^2) in accordance with the agreement [17]. Rwp is the weight ratio of the difference between the XRD pattern of observation and calculation (ideal value of Rwp < 10%). Meanwhile, χ^2 (chi-squared) is the ratio of the XRD pattern of observation results comparable with expectations (ideal value of $1 < \chi^2 < 1.3$). The refinement results of x-ray diffraction pattern confirmed that the sample is a single phase of La$_2$O$_3$ with a hexagonal structure, space group of P 63/mmc, meanwhile, the unit cell parameters for the La$_2$O$_3$ phase is summarized as the following: $a = b = 3.9346(1)$ Å and $c = 6.1265(1)$ Å, $\alpha = \beta = 90^\circ$ and $\gamma = 120^\circ$, $V = 82.13(1)$ Å3, $\rho = 5.030$ gr.cm$^{-3}$, $wR_p = 6.7\%$ and χ^2 (chi-squared) = 1.14. The results of nanoparticle morphology is similar to the results of research of Mazloumi [18] who has managed to make nanostructure lanthanum hydroxide powders by using chemical process with KOH and NaOH as the solvents.

However, the process result of this hydrolysis has different morphological forms. The TEM image observations have obtained the morphology of La$_2$O$_3$ nanoparticles shaped nanoneedles. Figure 2 shows the morphology of La$_2$O$_3$ nanoneedles according to a drops speed of 3 ml/min, 6 ml/min and 9 ml/min ammonia. The looks growth occurs on the specific field orientation in the La$_2$O$_3$ crystal.

Figure 2(a) is a TEM image of La$_2$O$_3$ nanoneedles with the drops speed of 3 ml/min. It appears that the growth of La$_2$O$_3$ nanoneedles has been successfully formed although there are still several different particle shapes. This phenomenon needs to be confirmed based on the analysis phases result of the X-ray diffraction pattern. La$_2$O$_3$ nanoneedles formed has a diameter of 30 nm by variation of the length in ranges from 50-150 nm. Figure 2(b) is a TEM image of La$_2$O$_3$ nanoneedles with the drops speed of 6 ml/min of which growth results shape was much better compared with the results of the drops speed of 3 ml/min.

At drops speed of 3 ml/min, La$_2$O$_3$ nanoneedles formed has a shape and size that are relatively uniform in which particle diameter is 20 nm and an average length around 250 nm. However, these particles seem still wrapped with the form of other particles so they need also confirmation with the results of phase analysis by using XRD. Figure 2(c) is a TEM image of La$_2$O$_3$ nanoneedles synthesized with the drops speed of 9 ml/min. At this speed, the results of nanoneedles obtained relatively looks better compared to the drops speed of 3 and 6 ml/min. Nanoneedles morphological forms appear more clearly and relatively homogeneous. Average diameter of particle is about 10 nm with an average length of about 250 nm. The interesting case in this study is the changing shape of the particles from polygonal shape into nanoneedles. This case means that the preferred orientation (PO) of crystal is thought to occur in the direction of a particular field so that an understanding of the crystal structure and phases analysis needs to be studied further.

Figure 2. Nanoparticles morphology of La$_2$O$_3$ nanoneedles
Figure 3. X-ray diffraction pattern of the La$_2$O$_3$ nanoneedle with variations in drops speed of (3 ml/min, 6 ml/min, 9 ml/min, and standard)

The X-ray diffraction profiles of La$_2$O$_3$ nanoneedle are shown in Figure 3 in which respective profiles are 3 ml/min, 6 ml/min, 9 ml/min, and the standard compared. It is shown that the three diffraction patterns exhibit a pattern different between ones each other.
Figure 3 shows the results of measurements of X-ray diffraction pattern of the nanoneedle \(\text{La}_2\text{O}_3 \) with variations in drops speed of (3 ml/min, 6 ml/min, 9 ml/min, and standard). Based on the results of the phase identification, the reaction has successfully formed a single phase \(\text{La}_2\text{O}_3 \) on the drops speed of 9 ml/min, while for the drops speed of 3 ml/min and 6 ml/min, the sample can not react perfectly so the sample consists of multi-phases. The results of the phase identification for drops speed of 3 ml/min consist of three phases namely \(\text{La}_2\text{O}_3 \) (lanthanum oxide), \(\text{La(OH)}_3 \) (lanthanum hydroxide) and \(\text{LaClO} \) (lanthanum oxychloride), meanwhile for drops speed of 6 ml/min there are two phases namely \(\text{La}_2\text{O}_3 \) and \(\text{La(OH)}_3 \). Thus, the results require further analysis to determine the changes of the crystal structure parameters, the amount of mass fraction formed, and fitting quality as shown in Figure 4.

Figure 4 shows the results of refinement X-ray diffraction pattern of the nanoneedle \(\text{La}_2\text{O}_3 \) with the variations of drops speed (3 ml/min, 6 ml/min, and 9 ml/min). Qualitative and quantitative analysis refers to the Crystallography Open Database with the card number (COD: 2002286), (COD: 4031381) and (COD: 2101549) respective for phases of \(\text{La}_2\text{O}_3 \), \(\text{La(OH)}_3 \) and \(\text{LaClO} \).

The complete summary of the results of X-ray diffraction pattern of the nanoneedle \(\text{La}_2\text{O}_3 \) with the variations of drops speed (3 ml/min, 6 ml/min, and 9 ml/min) for all of samples are shown in Table 1.

Table 1. The value of structure parameters, criteria of fit \(R_{wp} \), goodness of fit \(\chi^2 \) and the mass fraction of phase formed in the \(\text{La}_2\text{O}_3 \) nanoneedle with variations of drops speed (3 ml/min, 6 ml/min, and 9 ml/min).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Phase</th>
<th>Lattice parameter ((\text{Å}))</th>
<th>(V) ((\text{Å}^3))</th>
<th>P (g/cm(^3))</th>
<th>Fraction (wt%)</th>
<th>(R_{wp}) (%)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ml/min</td>
<td>(\text{La}_2\text{O}_3)</td>
<td>3.9341(2) 6.1275(4)</td>
<td>[102] (0.94)</td>
<td>82.13(1)</td>
<td>5.989</td>
<td>22.97</td>
<td>7.81</td>
</tr>
<tr>
<td></td>
<td>(\text{La(OH)}_3)</td>
<td>6.5274(3) 3.8494(2)</td>
<td>-</td>
<td>142.0(1)</td>
<td>4.371</td>
<td>15.92</td>
<td>7.57</td>
</tr>
<tr>
<td></td>
<td>(\text{LaClO})</td>
<td>4.1196(3) 6.8743(8)</td>
<td>-</td>
<td>116.6(2)</td>
<td>5.419</td>
<td>61.11</td>
<td>7.31</td>
</tr>
<tr>
<td>6 ml/min</td>
<td>(\text{La}_2\text{O}_3)</td>
<td>3.9347(1) 6.1235(3)</td>
<td>[102] (0.82)</td>
<td>82.10(8)</td>
<td>5.691</td>
<td>73.28</td>
<td>7.57</td>
</tr>
<tr>
<td></td>
<td>(\text{La(OH)}_3)</td>
<td>6.5243(8) 3.8544(6)</td>
<td>-</td>
<td>142.1(1)</td>
<td>4.368</td>
<td>26.72</td>
<td>7.31</td>
</tr>
<tr>
<td>9 ml/min</td>
<td>(\text{La}_2\text{O}_3)</td>
<td>3.9344(2) 6.1241(4)</td>
<td>[102] (0.76)</td>
<td>82.10(1)</td>
<td>5.371</td>
<td>100.00</td>
<td>7.31</td>
</tr>
</tbody>
</table>

Figure 4 and Table 1 show that the refinement results of X-ray diffraction pattern has also a good fitting quality. Table 1 shows that based on the refinement of XRD pattern, especially for phases of \(\text{La}_2\text{O}_3 \) it is concluded for all of the samples, that the lattice parameters, volume of unit cell, and atomic density do not change. It means that the crystal structure of \(\text{La}_2\text{O}_3 \) phase is not deformed due to the effect of drops speed. However, the drops speed affect the total mass fraction of \(\text{La}_2\text{O}_3 \) crystal growth and preferred orientation of \(\text{La}_2\text{O}_3 \) crystal as shown in Figure 5.
Figure 5. Effect of the drops speed on the mass fraction and preferred orientation of La$_2$O$_3$ crystal

In Figure 5, it appears that the La$_2$O$_3$ crystal growth and degree of preferred orientation [102] increased in line with the increase of the drops speed. This phenomenon is due to the drops speed of ammonia can affect the amount of La$_2$O$_3$ crystal growth. The La$_2$O$_3$ crystal has grown naturally on the direction of the field [102]. The present orientation crystal is generally caused by change of particle shape from polygonal to nanoneedles shape.

Figure 6. Characteristics of microwave absorber on the La$_2$O$_3$ nanoneedles

The intrinsic and extrinsic characteristics of microwave absorber material make a unique phenomenon to be studied. It is because the main requirement is needed as a material absorbing microwave is the presence of intrinsic characteristics (properties of magnetic loss and dielectric loss) on the material in addition to the extrinsic characteristics (factors of the particle geometry). It means that the factor of particle geometry also determines the microwave absorption capability.

Figure 6(a) shows the relation between the reflection loss (RL) of La$_2$O$_3$ nanoneedles and the microwave at frequency in range of 8-12 GHz when the thickness of sample is 2 mm. There are at least three absorption peaks observed within the frequency X-band, of which value of the absorption peaks are around -20 dB at 8.4 GHz; -15.0 dB at 10.5 GHz and -22 dB at 11.7 GHz. Meanwhile, the effect of particle geometry on the microwave absorber is shown in Figure 6(b). Figure 6(b) shows that the mechanism of microwave scatters on the particle morphology so that the microwave will not be reflected back to the surface.

4. Conclusion
The synthesis of La$_2$O$_3$ nanoparticles has successfully made by using hydrolysis method. Based on the TEM image observations, the morphology of La$_2$O$_3$ nanoparticles shaped nanoneedles. The result of morphological of La$_2$O$_3$ nanoneedles indicate that better sample is obtained when the sample is synthesized with the drops speed of 9 ml/min. Nanoneedles morphological forms appear more clearly and relatively homogeneous. The average diameter of the particle is about 10 nm with an average length of about 250 nm. The changing shape of the particles from polygonal shape into nanoneedles is affected by the presence of preferred orientation (PO) of crystal on the direction of the field [102]. The factor of the particle geometry also determines the microwave absorber capability. The microwave characteristic of the La$_2$O$_3$ nanoneedles has indicated certain microwave absorption properties in the frequency range of 8-12 GHz when the thickness of sample is 2 mm. There are at least three absorption peaks observed within the frequency X-band, of which value of the absorption peaks are around -20 dB at 8.4 GHz; -15.0 dB at 10.5 GHz and -22 dB at 11.7 GHz.

5. References

[1]. Sumarni, Riesna Prassanti, Kurnia Trinopiawan, Sumiarti and Hafni Lissa N 2011 Eksplorium 32 No. 2 115 – 124
[3]. Kurnia Setiawan Widana, Bambang Priadi and Yustina Tri Handayani Eksplorium 2014 35 No. 1 11-12

Acknowledgements

The authors gratefully acknowledge the support of the Centre for Science and Technology of Advanced Materials, BATAN for the research facilities.