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Abstract. The objective of goal localization is to find the location of goals in noisy 

environments. Simple actions are performed to move the agent towards the goal. The goal 

detector should be capable of minimizing the error between the predicted locations and the true 

ones. Few regions need to be processed by the agent to reduce the computational effort and 

increase the speed of convergence. In this paper, reinforcement learning (RL) method was 

utilized to find optimal series of actions to localize the goal region. The visual data, a set of 

images, is high dimensional unstructured data and needs to be represented efficiently to get a 

robust detector. Different deep Reinforcement models have already been used to localize a goal 

but most of them take long time to learn the model. This long learning time results from the 

weights fine tuning stage that is applied iteratively to find an accurate model. Hierarchical 

Extreme Learning Machine (H-ELM) was used as a fast deep model that doesn’t fine tune the 

weights. In other words, hidden weights are generated randomly and output weights are 

calculated analytically. H-ELM algorithm was used in this work to find good features for 

effective representation. This paper proposes a combination of Hierarchical Extreme learning 

machine and Reinforcement learning to find an optimal policy directly from visual input. This 

combination outperforms other methods in terms of accuracy and learning speed. The 

simulations and results were analysed by using MATLAB. 

 

1. Introduction 

Goal localization is one of the important tasks in indoor navigation systems. Visual data from a 

camera can be used, instead of traditional sensors such as GPS, to get information about the position 

of the agent and the goal. This observed data may be noisy and needs to be processed before being 

applied to a path planning algorithm.  

The reinforcement learning suffers from the curse of dimensionality problem [1]. This problem 

appears when the agent needs to process and analyse high dimensional data (hundreds or thousands of 

dimensions). This problem can be solved by using one of the dimension reduction techniques. 

Traditionally dimensionality reduction techniques, such as Principle Component Analysis (PCA), 

Independent Component Analysis (ICA), and local linear embedding, are used to transform raw data 
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to a lower dimensional manifold. Recently, feature learning techniques have been exploited to learn 

good representation automatically. 

The autonomy of a learning system is achieved by its ability to adapt to the changes in the 

environment by finding suitable representations automatically. It is so important to stop depending on 

manual engineering that uses hand-crafted pre-processing stages and replace it by recently proposed 

deep models.  

Unsupervised learning of deep auto encoder network was integrated into batch-reinforcement 

learning in [2, 3]. The near-optimal policy was demonstrated automatically by learned feature spaces 

in grid-world like task. Deep fitted q-iteration was proposed for this object. 

 A class-based active detection model was proposed in [4].  It learns to localize object known by the 

system. The agent analyses the content of region to select the next best action. DeepQNetwork is used 

to learn the localization policy. Pre-trained convolutional neural network is utilized to extract features 

from the current region. 

Another system that uses raw visual input data is pole balancing controller, it was proposed to learn 

a control policy by using reinforcement learning [5]. The deep encoder neural network is utilized for 

dimensionality reduction of the raw images. 

A real slot car controller is able to learn the optimal actions autonomously [6]. It is based on 

cluster-reinforcement learning which was added to a Fitted-Q batch reinforcement learning to 

approximate the Q function. 

An artificial deep Q-network agent was demonstrated to compete human in game playing [7]. The 

inputs are the pixels and the game scores. The objective is to produce actions that maximize 

accumulated scores. 

This paper proposes a deep model that is based on Hierarchical Extreme learning machine [8] in a 

visual reinforcement learning task. The combination of deep learning and Reinforcement learning is 

very fruitful to have a complete system that gets visual data as input and gives optimal policy as 

output. Fig. 1. Shows the block diagram of the proposed system. The deep learning is used to learn 

suitable features from high dimensional data. The model free reinforcement learning is utilized to 

learn the optimal policy. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 1. Block diagram of the proposed system  
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2. Methodology 

 

2.1  Extreme Learning Machine for classification and regression 

Extreme learning machine (ELM) is a feedforward neural network that has one hidden layer. The high 

generalization and high speed learning are behind the success of this learning method [9]. The biases 

and weights of the hidden layers are set randomly but the weights of output are calculated analytically.  

𝑓 (𝑥) =  ∑ 𝐹𝑖(𝑥, 𝑊𝑖  , 𝑏𝑖).  𝛽𝑖     ,   𝑊𝑖  𝜖 𝑅𝑑    ,    𝑏𝑖 , 𝛽𝑖   𝜖  𝑅 𝐿
𝑖=1                                                           (1) 

Where Fi (・) is the activation function of i th hidden node, Wi is the input weight, bi is the bias, and βi 

is the weight of output, L is the number of nodes in the hidden layer. 

𝛽 =  H†T    ,       𝛽 =   𝐻𝑇 (
1

𝜆
+ 𝐻 . 𝐻𝑇 )−1 . 𝑇                                                                                 (2)                                                                                    

Where H is the output matrix of the hidden layer, H
†
 is the Moore–Penrose generalized inverse of H, T 

is the matrix of target, and 𝜆 is the regulation coefficient. 

2.2  Hierarchical ELM for feature learning 

When dealing with visual data such as images, the deep architecture of extreme learning machine is 

required [8]. This architecture can achieve self-taught feature learning by unsupervised elm-based 

sparse encoder. H-ELM gives better generalization and less learning time. The elm-based sparse 

encoder is built by using fast iterative shrinkage-thresholding algorithm (FISTA).  This encoder is 

used as a basic component of the H-ELM. Deep architecture can be achieved by stacking multiple 

encoders. It guarantees better data recovery and reduces the testing time by reducing the number of 

neural nodes. Return to H-ELM paper [8] for more details.  

2.3  Reinforcement Learning  

Reinforcement learning is an important learning method that focuses on how agents should take 

optimal actions in the environment to maximize the discounted cumulative reward [1]. See Equation 3. 

𝑅 = ∑ 𝛾𝑡∞
𝑡=0  𝑟𝑡+1                                                                                                                               

(3) 

Where 0 < 𝛾 < 1 is the discounted factor. 

RL framework is formulated as a Markov decision process (MDP). The main difference between 

the traditional learning and the model free reinforcement learning is that there is no need to have a 

prior knowledge about the model of the environment.  

The main components of the reinforcement learning model are: 

1. Environment states S. 

2. Environment observations O. 

3. Agent actions A. 

4. Relation between states (St, at, St+1).  

5. Reward R. 

One of the most famous and used RL algorithms is Q-learning. It is a model free RL algorithm. Its 

core is a value iteration update. The value function is found by Equation. 4. The optimal policy can be 

found by Equation. 5. 

𝑄 (𝑠 , 𝑎) =  𝑄 (𝑠 , 𝑎) +  𝛼 (𝑅 +  𝛾  𝑄 (𝑠′ , 𝑎′) −  𝑄 (𝑠 , 𝑎))                                                              (4)                                                                                                         

π (s) = 𝑎𝑟𝑔𝑎 max (𝑄(𝑠, 𝑎))                                                                                                            (5) 

Where Q is the value function, 𝛼 is the learning rate. 
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2.4 The proposed architecture 

The proposed architecture is a combination of H-ELM and Q-learning RL. The H-ELM is used to 

learn good features so as to find representations for input images. The Q-learning is utilized to use the 

learned features as states in MDP model to produce optimal actions. 

The main steps of the proposed method are as follows: 

1) Initialization Initialize the weights W0 of the encoder’s hidden layers randomly. Initialize 

episode counter c and sample counter s. Initialize value function Q (s, a) = 0. 

2) Exploration explore the environment by using ϵ-greedy policy to collect training data 

(observations Ot). These observations are used as inputs to H-ELM based deep model. 

Increment s with each new observation. 

3) Encoding transfer all training data from observation space to feature space by applying auto 

encoder on the observations to get feature vectors Zt  ,  Zt = Encode (Ot). 

4) Reinforcement Learning Find the state action value for each feature vector by using 

Equation4 and by utilizing supervised ELM based value function approximator.  If the 

convergence is achieved, return the approximated value function, greedy policy and the 

encoder. Else, repeat the steps from 2 to 4. 

5) H-ELM based classification after mapping between the observations and the values of 

actions, the H-ELM based classifier is used to map each noisy observation with the best action 

results from the previous steps. 

 

3. Experimental Results 

 

3.1 The environment description and simulation 

In this goal localization task with noisy image, the agent observes an image with 30*30 = 900 pixels. 

Gaussian noise is added to the images with zero mean and variance σ = 0.1. The agent should localize 

the goal region with a few number of moves (shortest-path problem).  

The MDP (Markov Decision Process) model of the environment contains: a reward of 0 is given 

for any movement not leading to the goal area or obstacles. A reward of -1 is given to any movement 

colliding with obstacles. A reward of 1 is given to a goal ending movement. The rules of transition 

between different states are also given. Four actions are performed to move the agent to 4 directions:  

right, left, up and down. 

The number of raw observations (images) is determined by the number of agent’s positions in the 

image. In our case, there are 36 observations. Fig. 2. Shows the 36 observations without (a) and with 

(b) Gaussian noise. The training and testing data consists of 3600 noisy images for training and 3600 

for testing. For each agent position, there are 100 images. 

3.2 Accuracy analysis 

The proposed method gives high performance with 100 % accuracy. Fig. 3. Shows the confusion 

matrix of the testing data. After finding efficient features, reinforcement learning is applied to find 

optimal actions. Fig. 4. Shows the average predicted state value. The convergence is achieved after 

only few steps.  

The accuracy of different architectures of H-ELM (different number of nodes in the hidden layers) 

is shown in Table1. In Table 2, the comparison between H-ELM and PCA features is demonstrated. 

H-ELM seems to produce better accuracy with the same number of features. The Fig. 5. Displays the 

curve of PCA Eigen values. 
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Figure 2. Training and testing images  

a) Images without noise: red boxes refer to optimal actions from start (closed circle) to the goal 

(*), grey square represents the goal region. 

b) Noisy images used to test the robustness of the system.  

 

Figure 3. Confusion matrix of testing data           Figure 4. Average predicted state value curve 

 

 
Figure 5. PCA Eigen values curve. 
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Table 1. Accuracy of testing noisy images with different model architectures 

                                                                                                

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Accuracy comparison between PCA and H-ELM with different number of features 

 

 

 

 

 

 

 

 

 

3.3  Speed analysis 

The combination of Hierarchical Extreme learning machine and Reinforcement learning outperforms 

other methods in terms of learning speed. Table 3 shows the training time of H-ELM and traditional 

stacked auto encoder [10]. The RL needs many episodes before achieving the convergence. From 

Fig.4, it is clear that the number of required episodes is almost 50. In each episode, the data samples 

are trained. Therefore the total time is the number of episodes multiplied by the training time in each 

episode.    

 

Table 3. Training time comparison between H-ELM and traditional stacked auto encoder 

 

 

 

 

Number of nodes in 

first and second 

hidden layers 

Accuracy 

% 

500-200 99.97 

500-100 99.94 

500-50 99.97 

500-20 97.63 

500-10 97.47 

500-7 96.52 

500-5 87.91 

500-3 66.11 

200-3 69.88 

400-3 76.52 

400-5 90.83 

400-7 95.72 

400-10 97.02 

400-100 100 

400-200 100 

Number of 

features 

PCA 

Accuracy % 

H-ELM 

Accuracy % 

50 100 100 

20 97.17 98.83 

10 97.08 97.94 

5 93.61 93.63 

3 71.33 76.52 

 

Method 
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Total 

Training time 

(s) 

 

Stacked Auto 

encoder [10] 

 

71 

 

3550 

H-ELM 5 250 
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4. Conclusion and future work 

This paper proposed a combination of Hierarchical Extreme learning machine and Reinforcement 

learning. This combination is fruitful to learn optimal policy directly from visual input. This 

combination outperforms other methods in terms of accuracy and learning speed. 

The advantages of the proposed architecture are: 

1) Suitable action is produced when observation is forwarded through the network. This is 

important to reduce the testing time. 

2) The use of H-ELM doesn’t require to fine tune the encoder’s weights iteratively and as the 

consequence, it reduces the time of learning and training.   

This paper only focuses on the static images and does not take the relationship between individual 

frames into consideration. Future work should focus on this point to use dynamic information of the 

system. 
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