This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:
Paper The following article is Open access

Optimization of tribological performance of SiC embedded composite coating via Taguchi analysis approach

, , and

Published under licence by IOP Publishing Ltd
, , Citation M A Maleque et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 184 012035 DOI 10.1088/1757-899X/184/1/012035

1757-899X/184/1/012035

Abstract

Tungsten inert gas (TIG) torch is one of the most recently used heat source for surface modification of engineering parts, giving similar results to the more expensive high power laser technique. In this study, ceramic-based embedded composite coating has been produced by precoated silicon carbide (SiC) powders on the AISI 4340 low alloy steel substrate using TIG welding torch process. A design of experiment based on Taguchi approach has been adopted to optimize the TIG cladding process parameters. The L9 orthogonal array and the signal-to-noise was used to study the effect of TIG welding parameters such as arc current, travelling speed, welding voltage and argon flow rate on tribological response behaviour (wear rate, surface roughness and wear track width). The objective of the study was to identify optimal design parameter that significantly minimizes each of the surface quality characteristics. The analysis of the experimental results revealed that the argon flow rate was found to be the most influential factor contributing to the minimum wear and surface roughness of the modified coating surface. On the other hand, the key factor in reducing wear scar is the welding voltage. Finally, a convenient and economical Taguchi approach used in this study was efficient to find out optimal factor settings for obtaining minimum wear rate, wear scar and surface roughness responses in TIG-coated surfaces.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/184/1/012035