This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Throughput Enhancement of Car Exhaust Fabrication Line by Applying MOST

, , and

Published under licence by IOP Publishing Ltd
, , Citation E. A. H. Hanash et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 184 012022 DOI 10.1088/1757-899X/184/1/012022

1757-899X/184/1/012022

Abstract

In the fiercely competitive world market of today, manufacturers are facing increasingly tougher challenges and are compelled to find ways for productivity enhancement wherever possible in the whole supply chain. Nevertheless there are many facets in business process which can be explored for possible improvement, an immediate focus goes for the involved processes to re-engineer the activities in different workstations for an efficient and balanced assembly or fabrication line. In this paper an industrial case on fabrication line of a car exhaust system is presented to illustrate the scope of improvement by applying the MOST (Maynard's Operation Sequence Technique) in streamlining the activities followed by assembly line balancing (ALB). The whole process of conducting various tasks is investigated to find out the lapses or wastes, to search for better option and to set the standard times for the tasks. Then individual workstation time is worked out by summing up the standard times of the involved tasks or activities and the concept of ALB is attempted to balance the fabrication line. So by possible reduction or elimination of the identified wastes or lapses workstation times including the bottleneck station are lowered. As a result the throughput of car exhaust systems is enhanced. According to the current practice, the Takt time is set at 3 minutes. However, upon an analysis through use of the MOST, the bottleneck station time is found to be as low as 1.27 minutes. Thus an opportunity of meeting the current level of demand with significantly lower workforce (with 2 operators instead of 5) is revealed. Alternatively, if necessary, an increased workload can be assigned for the current level of workforce. Moreover, with proper distribution of activities among the workstations using the concept of ALB, the line efficiency is found to be improved. So the line balance loss in the current setup of production line is also possible to be largely reduced. Thus daily production of car exhaust, if modified with suggested changes with the current workforce, could be more than double compared to the current daily output. Hence, effectiveness of the MOST followed by ALB applications to expose and remove the operational wastes in the work flow is reiterated with enhanced throughput.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.