This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Effects of Ceramic Fibre Insulation Thickness on Skin Formation and Nodule Characteristics of Thin Wall Ductile Iron Casting

, , , and

Published under licence by IOP Publishing Ltd
, , Citation D Dhaneswara et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 176 012032 DOI 10.1088/1757-899X/176/1/012032

1757-899X/176/1/012032

Abstract

Skin formation has become one of the problems in the thin wall ductile iron casting because it will reduce the mechanical properties of the materials. One of the solutions to reduce this skin formation is by using heat insulator to control the cooling rate. One of the insulators used for this purpose is ceramic fibre. In this research, the thickness of the ceramic fibre heat insulator used in the mould was varied, i.e. 50 mm on one side and 37.5 mm on the other side (A), no heat insulator (B), and 37.5 mm on both sides (C). After the casting process, the results were characterized in terms of metallography by using scanning electron microscope (SEM) and tensile test for mechanical properties. The results showed that the skin thickness formed in A is 34.21 μm, 23.38 μm in B, and 27.78 μm in C. The nodule count in A is 541.98 nodule/mm2 (84.7%) with an average diameter of 15.14 μm, 590 nodule/mm2 (86.7%) with an average diameter of 13.18 μm in B, and 549.73 nodule/mm2 (87.2%) with an average diameter of 13.95 μm in C. The average ultimate tensile strength for A was 399 MPa, B was 314 MPa, and C was 415 MPa. Microstructural examination under SEM showed that the materials have a ductile fracture with matrix full of ferrite.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/176/1/012032