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Abstract. A patch repair material has been developed in the form of unsaturated polyester 

resin (UPR)-mortar. The performance and durability of this material are governed by its 

compatibility with the concrete being repaired. One of the compatibility issue that should be 

tackled is the dimensional compatibility as a result of differential shrinkage between the repair 

material and the concrete substrate. This research aims to evaluate such shrinkage related 

properties of UPR-mortar and to compare with those of other patch repair materials. The 

investigation includes the following aspects: free shrinkage, resistance to delamination and 

cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both 

delamination and cracking tendency in comparison to other repair materials. 

1. Introduction 

Numerous reinforced concrete (RC) structures have been built to provide a variety of infrastructures 

which serve human needs and support economic activities. Some of these RC structures prove to have 

an excelent performance spaning for a period of more than their intended service life. However, there 

is also evident that many of these RC structures tends to lose their serviceability after years in use and 

need a repair in order to meet their service life. Patching method is an appropriate technique to repair 

the degraded RC structure in the form of spalling and delamination. Patching method, when correctly 

applied, could recover the size and appearance of RC element, regain its strength and capacity, 

minimize the continuing corrosion of reinforcement and ultimately extend the service life of RC 

structure [1-3]. 

The expected additional service life of the repaired RC structures will be governed by the 

performance and durability of repair material being used. Previous study through case history by 

Mathew [4] demonstrated that the commnon forms of repair failures are cracking of repair material 

(32%), delamination (25%), continues corrosion of reinforcement (22%), alkali-aggregate reaction 

(4%) and others (17%). Cracking and delamination which count for more than 50% of repair failures 

could be triggered by differential shrinkage between the repair material and parent concrete. The 

differential shrinkage will induce tensile stress in the repair material [5]. High induced tensile stress 

leads to cracking when this tensile stress attains tensile capacity of repair material. In addition to 

tensile stress, shear and peeling stress also exist at the interface of repair material and parent concrete. 
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High induced shear and peeling stress will promote a risk of delamination when these stresses 

overcome the bonding capacity of repair material to parent concrete.  

Curing of repair material is a good practice to improve the material’s resistance againts differential 

shrinkage cracking. Curing will delay drying and consequently reduces the rate of shrinkage. 

Furthermore, curing promotes strength gain with a benefit of increasing tensile capacity of repair 

material. Even though curing may also reduce the stress relaxation due to an increase of repair 

material’s stiffness, the overall effects is to reduce the risk of cracking [6]. Another approach that 

could improve the shrinkage cracking resistance of repair material is to incorporate fibres on the mix 

[7], develope a high strength-high ductility of repair material [8], make a rough surface which permit a 

realization of monolitic behaviour of repair system instead of smooth surface which is likely to 

provoke debonding [9]. The bond strength has also been identified to be influenced by the type of 

repair material. Greater bond strength is recognized in the following order: polymer mortar, polymer 

cement mortar and modified polymer cement mortar [10]. 

In the preceding paragraphs, the key factors influencing the risk of cracking and delamination have 

been highlighted and a variety of examples are shown in the development of repair materials to 

achieve repair materials with lower tendency of cracking and delamination. Previous research by 

authors [11-13] proposed a repair material made from an unsaturated polyester resin (UPR)-mortar 

which shows an excellent mechanincal performances. In this paper, UPR-mortar is further investigated 

to characterize its shrinkage related properties which include free shrinkage, delamination and 

cracking tendency. The properties of this material are compared to other repair materials which are 

available commercially in the market.  

2. Experimental 

2.1. Materials 

UPR-mortar has been developed using an unsaturated orthophtalic type resin made from the 

polymerization of di-carboxylic acids with glycols as the main binder. The thermo-setting of this 

material is initiated by curing agent (hardener). The amount of hardener was proportioned at 3% by 

weight of the UPR. Aggregate used for the production of UPR-mortar was sand having a bulk specific 

gravity of 2.51 and fineness modulus of 3.77. Fillers were also incorporated in the development of 

UPR-mortar. The fillers were cement and fly ash. The final composition of UPR-mortar per m3 

volume was as follows: 860.7 kg of sand, 430.4 kg of UPR, 731.6 kg of cement, and 129.1 kg of fly 

ash. For the purpose of comparison, three other repair materials were investigated namely normal 

mortar (NM), SIKA repair mortar and BASF Nanocrete. The last two materials are commercially 

available in the market. The proportion of NM per m3 volume was as follows: 891.6 kg of sand, 757.9 

kg of cement, 133.7 kg of fly ash and 285.3 kg of water. While the commercial repair mortars were 

mixed with water at amount specified by the respective manufacture. 

2.2. Method 

Free shrinkage of repair materials were measured on cylinder specimens with diameter of 76 mm and 

height of 276 mm following RILEM recommendation [14]. Each repair materials were represented by 

two specimens. For each specimen, four pairs of demec points were attached on the surface of 

specimen at equidistant of 90
o
. The gauge length of this pair of demec points was 200 mm. The 

deformation of each specimen due to shrinkage was taken as an average of four changes of the 

distance between each pair of demec points. These changes in distance were measured using 

demountable mechanical strain gauge with a resolution of 1 micron. Figure 1 (a) illustrates the free 

shinkage specimen. 

The delamination of repair materials were investigated by monitoring the tendency of the materials 

to detach from the SPS Plate (see Figure 1 (b)). After repair material which has been cast on top of the 

SPS Plate reached a hardened state (in this study 1 day after casting), one of the edge of the repair 

beam was clamped. The other edge was left without any sorts of clamping and so, this edge would be 
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allowed to curl freely when the repair material exhibited shrinkage. The curling of the repair layer at 

this location was measured using dial gauge.  

The German angle test method was adopted to measure the cracking tendency of repair materials 

(see Figure 1 (c)). The repair material was cast into V channel. On the following day, any visible 

cracks that may occur on the surface of repair materials were recorded. The observation of cracks 

covered the following aspects: time of initial crack, width of crack, length of crack, period of crack 

and propogation. Microcrack meter was used to measure the width of crack. 

 

 
 

Figure 1.Specimen types for measurement of shrinkage related properties of repair material: (a) free 

shrinkage; (b) delamination tendency; (c) cracking tendency 

3. Results and discussion 

3.1. Free shrinkage 

The free shrinkage of various repair materials measured for period of 30 days is presented in Figure 2. 

The temperature and relative humidity of the environment during test period are also presented in the 

figure. The fluctuation of shrinkage values is associated with the fluctuation of the environment 

condition especially the relative humidity. The relative humidity controls the drying process in which 

moisture within the pores of material evaporate to the surrounding environment. The drop of moisture 

in the pores induces surface tension with a consequence of shrinkage. Therefore, a fluctuation of 

relative humidity of the environment will create a fluctuation of drying and its subsequent shrinkage.  

All repair materials show similar trend of free shrinkage behaviour i.e. shrinkage is generally 

increased with time at diminishing rate. The shrinkage is relatively faster at the beginning of drying 

and proportional to the lost of water during evaporation. The shrinkage will be restrained by the bulk 

material. At the beginning of hardening process, the restraint provided by the bulk material is small. In 

the progress of hardening, the restraint will gradually increase. Hence, both reduction of rate of water 

lost due to evaporation and increase of restraint provided by material in the progress of hardening 

could explain the observed shrinkage behaviour. 

The magnitude of free shrinkage of the repair materials after 30 days of drying is in the range of 

1500-3000 microstrain. This amount of shrinkage is considered to be high in comparison to the 

concrete. Thus, the free shrinkage of repair materials could potentially create high differential 

shrinkage which gives a risk of cracking and delamination. It is clearly seen in Figure 2 that UPR-
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mortar exhibits the lowest magnitude and rate of shrinkage. Having the lowest shrinkage property, 

UPR-mortar is expected to undergo the least differential shrinkage induced stresses in comparison to 

other repair materials.  

 

 

 

Figure 2. Free shrinkage of various repair materials and their corresponding environment 

condition during period of testing 

 

3.2. Delamination tendency  

Measurement of delamination tendency was carried out for period of 90 days and the results are 

presented in Figure 2. The delamination is represented in the form of curling of the repair material 

detected at the free-clamped edge. The curling is indicated by the change in elevation of surface repair 

material at this edge. The general trend of the delamination could be identified as follows: initially a 

very fast rate of curling is observed up to 10 days of drying where the curling reaches its peak value. 

After this period, there is a tendency of reduction in the curling. As the time is progressing, the curling 

continues to decrease at diminishing rate. The curling seems to attain steady condition after 40 days of 

drying.  

The curling behaviour of repair material tested in SPS Plate is associated with restrained shrinkage 

action. The restraint is provided by the bond between repair material and SPS Plate. As a result of this 

restraint of shrinkage, there exists shear and peeling stress at the interface where the highest stresses 

occur at the edge. In addition to the shear and peeling stress which are the source of separation 

between repair material and SPS Plate, the restrained shrinkage also induces tensile stress in the repair 

material. This stress will trigger creep which offsets deformation of shrinkage. Recalling that 

shrinkage is increased at diminishing rate, the increase of creep will finally surpass the deformation of 
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shrinkage. Consequently, the curling will drop. For the repair materials investigated in this study, this 

behaviour seems to occur at 10 days of drying. 

  

Figure 3. Delamination tendency of various repair materials due to restrained shrinkage (indicated by 

change in elevation) and the corresponding environment during period of testing 

 

Repair material with higher free shrinkage will exhibit higher curling and vice versa. This is 

confirmed by the results of this study (see Figure 2 The low curling behaviour of UPR-mortar may 

also supported by the low stiffness and high bond strength of this material [11,12]. With low stiffnes, 

this material is able to provide high relaxation and accordingly relieve stresses that provoke 

separation. As for the high bond strength, this property will determine the level of accumulated 

stresses which are required to separate the repair material from the SPS Plate. With high bond 

strength, UPR-mortar could resist the stresses that may trigger separation. 

3.3. Cracking tendency 

Cracking tendency of various repair materials is evaluated using the German angle test method. 

Cracking of repair material in this test is a result of tensile stress development which surpass the 

tensile capacity of repair material. The build up of tensile stress is induced by restrained shrinkage in 

which restraint is provided by the bonding of repair material with the surface of V channel. Crack is 

certain when the build up of tensile stress can not be resisted by the tensile capacity of repair material. 

Once the repair material cracks, a portion of the induced tensile stress will be relieved. However, as 

long as shrinkage of repair material is still progressing, the effect is to enlarge the existing crack. The 

propagation of crack width follows the rate of shrinkage progress. It is why the trend of crack width 

propagation is similar to the rate of shrinkage progress i.e. the crack width increase at diminishing rate 

(see Figure 4). For the current study, the increase of crack width vanishes after 40-50 days of drying. 

 

   

  

a. SIKA Repair mortar (specimen 1) b. SIKA Repair mortar (specimen 2) c. BASF Nanocrete (specimen 1)   

Figure 4. Cracking evolution observed in SIKA Repair Mortar and BASF Nanocrete 
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Table 1. Cracking of various repair materials due to restrained shrinkage 

Repair material 
Initial crack 

width (mm) 

Maximum 

crack width 

(mm) 

Crack 

length 

(mm) 

Crack 

area 

(mm2) 

Total 

crack area 

(mm2) 

Normal Mortar 
Specimen 1 NA NA NA NA NA 

Specimen 2 NA NA NA NA NA 

SIKA Repair Mortar 

Specimen 1 
0.09 0.16 108.4 17.34 

32.02 
0.05 0.14 104.8 14.67 

Specimen 2 
0.06 0.14 104.8 14.67 

27.53 
0.07 0.13 101.5 12.86 

BASF Nanocrete  
Specimen 1 0.09 0.20 102.5 20.50 20.50 

Specimen 2 NA NA NA NA NA 

UPR-Mortar 
Specimen 1 NA NA NA NA NA 

Specimen 2 NA NA NA NA NA 

  

The results of cracking observation of the current test are presented in Table 1 and Figure 4. This 

test shows that cracks are only observed on the SIKA Repair Mortar and BASF Nanocrete. The 

maximum crack width is achieved after about 40-50 days of drying. The maximum crack width of 

BASF Nanocrete specimen is higher than those of SIKA Repair Mortar specimens. It is common to 

obtain a single crack with a higher crack width while a lower crack width is usually accompanied by 

more cracks. Comparison of cracking performance of the repair materials shows that UPR-mortar has 

an excellent performance than the commercial repair materials. With no appearance of crack, the build 

up tensile stress in this material did not exceed the tensile capacity of UPR-mortar. 

4. Conclusions 

Out of four repair materials investigated in this study, UPR-mortar exhibit the lowest magnitude 

and rate of shrinkage. UPR-mortar shows the lowest curling behaviour indicating that this material has 

the lowest risk of delamination compared to other repair materials. UPR-mortar also shows a superior 

cracking resistance than the commercial repair materials. The relatively low shrinkage, low stiffness 

and high tensile strength of UPR-mortar could ensure that the induced tensile stress due to restrained 

shrinkage is always kept below the strength of the UPR-mortar.  
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