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Abstract. Theoretical and experimental evidences show that high lift forces can be generated 

when a porous layer imbibed with a fluid is subjected to compression by a rigid and 

impermeable component in normal (approaching) relative motion.  If the porous layer is soft 

enough to neglect its solid structure reaction to compression then the pressure increase can be 

entirely attributed to the flow resistance of the porous structure when the fluid is squeezed out. 

The mechanism is highly dependent on the variation of permeability with porosity at its turn 

variable with the rate of compression. Such a mechanism can be used for impact damping but 

realistic applications need to consider an enclosed system which keeps the squeezed fluid 

inside and allows for re-imbibition. The paper presents a simple analytical model for the effects 

produced in highly compressible porous layers imbibed with Newtonian liquids, during 

compression between two parallel rigid disks placed in enclosed cells with variable volume 

buffer, similar to a hydro-pneumatic accumulator.  

1. Introduction 
Porous materials and squeeze-film systems have become increasingly popular for a variety of 
applications in engineering (e.g. shock absorbers and squeeze dampers). Various squeezing effects 
have been analysed with relatively rigid, porous materials, in different geometrical configurations 
(spherical, cylindrical or plane contacts) and loading conditions (constant speed, constant force or 
constant energy). All these applications were characterized by constant permeability. A more complex 
squeezing mechanism in the presence of highly deformable porous media has been relatively recently 
put into light [1]. It was named by professor M.D. Pascovici ex-poro-hidrodynamic (XPHD) 
lubrication. Its characteristic is the variation of permeability during the process, due to high 
compression rates that modifies (decrease) material porosity. It was shown, both theoretically and 
experimentally its potential in generating high lift forces produced by the resistance to flow through 
the porous structure [2,3]. One of the possible applications is in shock absorption. 

This complex process involves the squeeze of fluid from the porous layer at different levels of 
permeability. XPHD mechanism is strongly dependent on porosity variation and describes the lift 
effects produced by the flow of fluid through a porous material. As the porous structure is highly 
deformable (very soft) the normal forces generated by elastic compression of the fibers comprising the 
solid phase are negligible compared to the pressure forces.  

Similar lift effects have been extensively studied by Weinbaum [4], with special emphasis on 
sliding motion over highly porous and soft materials filled with air. Even if, apparently, the 
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mechanism differs from that of normal motion, both show a lift force generated under rapid 
compaction of the soft material.  

Until now the XPHD mechanism proved to be efficient for the different configurations 
(sphere/plane, cylinder/cylinder, cylinder/plane, disk/plane) in open squeeze system. It means that the 
relative pressure on the contact boundaries is null (atmospheric pressure). Pascovici and co-workers 
[5] analyzed the squeeze flow at the contact between a disk and a conjugated plane surface, in case of 
non-zero pressure, modelling the flow into an extended porous layer (porous layer diameter is greater 
than that of the squeezing disk). 

However for practical applications the system should be able to operate continuously, that is after 
squeezing out, the fluid must be re-imbibed into the porous layer, able to support a new loading. As a 
consequence, the fluid expelled out must be collected into a variable volume buffer, able to collect the 
whole volume of the dislocated fluid. The buffer can be represented either by a volume with elastic 
limits (toroidal membrane similar to an elastic bladder) or by a variable volume accumulator separated 
by a differential piston from a gas buffer chamber (solution similar to hydro-pneumatic systems used 
in shock dampers). This arrangement is called closed-cell as there is no fluid flow to the environment. 

The model presented in this paper is focused on squeeze effects with variable pressure at the 
boundaries of the disks corresponding to the squeeze flow case in an encapsulated system when the 
fluid expelled out by the squeezing disks flows into a variable hydro-pneumatic buffer. The present 
work is originated from the necessity to investigate the damping capacity of the porous media imbibed 
with liquids, in cyclic loading conditions, a relatively new subject but which experiences an increasing 
interest due to its innovative approach and the variety of its possible applications. 

2. The model  
The model for the closed-cell in hydro-pneumatic-like configuration is schematically presented in 

figure 1. Two disks of radius, 𝑅, both perfectly rigid, separated by a soft porous layer, are placed into 
an enclosed cell. The porous layer of initial thickness, ℎ଴, and initial porosity, 𝜀଴, is completely 
imbibed with a Newtonian fluid of viscosity, 𝜂, assumed constant during the squeeze process. The 
upper disk can move downwardly, squeezes the porous layer and the liquid expelled out is collected in 
a variable volume accumulator created by a differential piston that separates it from a buffer gas 
chamber. The initial volume of the gas chamber is 𝑉଴ and its pressure is 𝑝଴. On the other side of the 
piston, the initial volume of the accumulator is assumed zero. During the squeeze, the fluid expelled 
out radially from the compressed porous layer is collected into the accumulator with simultaneous 
displacement of the piston toward the gas chamber, compressing the gas. The new volume of the gas 
chamber is reduced with the volume of the dislocated fluid. Neglecting the piston weight and the 
friction force between the piston and cylinder wall, the pressure in the accumulator equals the pressure 
in the gas chamber.  

 

Figure 1. The working principle of an enclosed system. 
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The expelling of fluid from the porous material generates high lift forces on the moving disk and 

compresses the gas from the buffer. For this hydro-pneumatic system it is customary to assume that 

the heat generated by compression dissipates into the environment and the temperature remains 

constant during the process; thus isothermal change of state according to Boyle-Mariotte law can be 

used. 

So that the pressure, 𝑝 can be expressed function of the initial volume of the buffer, 𝑉଴, and of the 

porous layer thickness, ℎ, as follows:                                                                                    𝑝 = 𝑝଴𝑉଴𝑉଴ − 𝜋𝑅ଶሺℎ଴ − ℎሻ                                                        ሺͳሻ 

Introducing the relative buffer initial volume, 𝑉̅଴ =  𝜋𝑅ଶℎ଴𝜀଴/𝑉଴ and the dimensionless thickness, 𝐻 = ℎ/ℎ଴, relation ሺͳሻ can be rewritten in the following form: 
                                                                                   𝑝 = 𝑝଴𝜀଴𝜀଴ − 𝑉̅଴ + 𝑉̅଴𝛨                                                              ሺʹሻ 

 

The XPHD lubrication modelling is based on the following simplifying hypotheses: 

 The fluid is Newtonian, the flow is laminar, isothermal and isoviscous;   

 The contact surfaces are rigid and impermeable;  

 The highly compressible porous layer (HCPL) is homogeneous, isotropic and relatively thin; 

as consequence the pressure is assumed constant across the thickness of the porous layer;  

 During the squeeze process the rigid plates remain parallel so that the thickness of the porous 

layer is constant in space and varies only in time;  

 The flow through the porous layer is modelled with Darcy equation;  

 The elastic forces of the porous medium are negligible compared to the flow resistance 

forces.  

Highly porous materials are mainly characterized by porosity (voids in the structure of the solid 

material) and by permeability, which is the ability of the material to allow the flow of fluid through it. 

Throughout this paper, we will define the porous layer using compactness which is the inverse of 

porosity, and defined by this equation:                                                                                          𝜎 = ͳ − 𝜀                                                                         ሺ͵ሻ 
 

During compression, the pore geometry changes, expelling the fluid from the material. In this 

process, the solid volume of the structure is compressed until it reaches zero porosity. Assuming that 

the porous layer does not change its circular area (does not expand during compression), the solid 

fraction conservation yields to the following equation:                                                                                         𝜎ℎ = 𝜎଴ℎ଴                                                                        ሺͶሻ 
 

The permeability of the porous layer is associated to the porosity/compactness according with 

Kozeny–Carman law [6], regularly used in previous studies ([1]-[3], [5], [8]-[12]):                                                                                    𝜙 = 𝐷ሺͳ − 𝜎ሻଷ𝜎ଶ                                                                     ሺͷሻ 

where 𝐷 = ݀ଶ/ͳ͸𝑘 is porous structure parameter, dependent on a characteristic dimension of the 

porous structure, ݀. Originally proposed for fluid flow through porous media consisting of 

spherical particles with relatively constant diameters, Kozeny–Carman equation proposes for the 

correction factor, 𝑘, correction values between 5 and 10. Later, Ghaddar [7] showed that equation ͷ 

can be used with satisfactory results for fibrous-based porous structures, where ݀ is the average fiber 

diameter. 

 

13th International Conference on Tribology, ROTRIB’16 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 174 (2017) 012031 doi:10.1088/1757-899X/174/1/012031

3



 

 

 

 

 

 

3. Analytical solution 
The model described in previous section will be analysed in two loading conditions: constant velocity 

(𝑤 = and constant force (𝐹 (ݐܿ =  respectively. Each of them will be presented separately in the ,(ݐܿ

following chapters.  

In both cases, as the squeezing surfaces remain parallel, the axisymmetry prevails and, assuming 

constant pressure across the thickness of the porous layer, the analysis becomes 1-D [13]. 

3.1. Constant velocity squeeze ሺ𝒘 =  𝒕ሻࢉ

The flow rate conservation equation at any radius, ݎ for a given normal velocity, 𝑤, can be written by 

equating the fluid dislocated during compression with the fluid flowing radially across the circular 

boundary, according to Darcy law:                                                                               𝜋ݎଶ𝑤 = −ʹ𝜋ݎ 𝜙ℎ𝜂 d𝑝dݎ                                                               ሺ͸ሻ 

Combining equations ሺͶሻ, ሺͷሻ and ሺ͸ሻ and rearranging the terms, the pressure gradient can be 

expressed as:                                                                              d𝑝dݎ = − 𝜂𝑤𝜎଴ଶݎʹ𝐷ℎ଴ሺ𝛨 − 𝜎଴ሻଷ                                                           ሺ͹ሻ 

 

Integrating equation ሺ͹ሻ for variable pressure on the outer edge of the porous layer 𝑝 =  𝑝ሺ𝐻ሻ – 

equation ሺʹሻ at ݎ = 𝑅, we get the parabolic pressure distribution on the disk:                                                        𝑝 = 𝑝଴ሺͳ − 𝜎଴ሻ𝑉̅଴𝛨 − 𝑉̅଴ − 𝜎଴ + ͳ + 𝜂𝑤𝜎଴ଶͶ𝐷ℎ଴ሺ𝛨 − 𝜎଴ሻଷ ሺ𝑅ଶ −  ଶሻ                             ሺͺሻݎ

 

Integrating the pressure distribution on the surface of contact, we obtain the lift force at a given 

compression, expressed in terms of dimensionless layer thickness, 𝐻: 
                                                  𝐹 = ʹ𝜋 ∫ 𝑅ݎ𝑝dݎ

଴ = 𝜋𝑅ଶ𝑝଴ሺͳ − 𝜎଴ሻ𝑉̅଴𝛨 − 𝑉̅଴ − 𝜎଴ + ͳ + 𝜋𝜂𝑤𝜎଴ଶ𝑅ସͺ𝐷ℎ଴ሺ𝛨 − 𝜎଴ሻଷ                           ሺͻሻ 

 

Finally, using a complex parameter, 𝑃 = 𝜂𝑤𝑅ଶ/𝐷ℎ଴𝑝଴ and dimensionless lift force, 𝐹̅ =𝐹/𝜋𝑅ଶ𝑝଴, equation ሺͻሻ takes the form:                                                                    𝐹̅ = ͳ − 𝜎଴𝑉̅଴𝛨 − 𝑉̅଴ − 𝜎଴ + ͳ + 𝑃𝜎଴ଶͺሺ𝛨 − 𝜎଴ሻଷ                                         ሺͳͲሻ 

 

From equation ሺͳͲሻ one can observe that the dimensionless lift force generated at a certain 

compression level, 𝐻, depends on three parameters: the initial compactness, 𝜎଴, the relative buffer 

initial volume, 𝑉̅଴ and the complex parameter, 𝑃.    
For a parametric analysis we selected typical values used in preliminary tests where a disk of radius 𝑅 = ʹͷ 𝑚𝑚 moves downwardly compressing with constant velocity (𝑤 = ͷ 𝑚𝑚/ݏ) onto a Ͷ 𝑚𝑚 

thickness fiber-based textile layer imbibed with water ( = ͳͲ−ଷ 𝑃ܽ ∙  placed in an enclosed cell (ݏ

whose internal pressure is ͳ ܾܽݎ. According to microscope image measurements, the fibers diameters 

range in between ʹͲ and ͷͲ 𝜇𝑚 and thus, the complex permeability parameter ranges between ͵ ∙ ͳͲ−ଵଶ 
and ͵ ∙ ͳͲ−ଵ଴ 𝑚ଶ. Correspondingly, the complex parameter is close to 𝑃 = ͳ and two other 

possible values have been also selected for the numerical applications 𝑃 = Ͳ.ͳ  and  𝑃 = ͳͲ. 

Figure ʹ plots the evolution of the lift force in function of thickness, 𝐻 for a value of initial 

compactness, 𝜎଴ = Ͳ.ʹ in three cases: 𝑃 = ͳͲ, 𝑃 = ͳ and 𝑃 = Ͳ.ͳ. The force variation is different for 

different values of the initial gas volume, noting that the lift force increases with increasing of the 

pressure, 𝑝଴ and thus with decreasing of the volume, 𝑉଴. The case of 𝑉̅଴ = Ͳ corresponds to the 

hypothetical case of an infinite volume buffer. 
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The parametric analysis of the lift force shows that the higher is the initial compactness, 𝜎଴, the 

higher is the force generated by solid structure of the porous material (figure 2.c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Variation of the dimensionless lift force, 𝐹̅ versus dimensionless HCPL thickness, 𝐻 for  

different values of complex parameter, 𝑃 = ͳͲ (a), 𝑃 = ͳ (b, c), respectively 𝑃 = Ͳ.ͳ (d). 

 

  It can be seen that the lift force increases with the compression of the material, due to the porosity 

that drops down to zero, a behaviour also observed in the case of null pressure at the boundaries. 

3.2. Constant force squeeze ሺ𝑭 =  𝒕ሻࢉ

The solution of the model for the constant force loading is based on the fact that the upper disk 

velocity is variable: 𝑤 = − ݀ℎ݀ݐ  (11) 

 

Combining equations (9) and (11) and using a new variable, 𝑋 = 𝐻 − 𝜎଴, the following differential 

equation with separable variables is obtained: 
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                                         𝜓ሺ𝑉̅଴𝑋 + 𝑉̅଴𝜎଴ − 𝑉̅଴ − 𝜎଴ + ͳሻ𝑋ଷ[𝜓ሺ𝑉̅଴𝑋 + 𝑉̅଴𝜎଴ − 𝑉̅଴ − 𝜎଴ + ͳሻ − ͳ + 𝜎଴] d𝑋 = − ͺ𝜋𝜎଴ଶ d𝜏                        ሺͳʹሻ 

where 𝜏 = 𝐹𝐷ݐ𝜂𝑅Ͷ is the dimensionless time and 𝜓 = 𝐹𝜋𝑅ʹ𝑝Ͳ is the dimensionless constant load. 

Noting that ߙ = ሺͳ − 𝑉̅଴ሻሺͳ − 𝜎଴ሻ and ߚ = ሺͳ − 𝜎଴ሻ/𝜓, the above equation becomes: 
                                                                  𝑉̅଴𝑋 + 𝑋ଷሺ𝑉̅଴𝑋ߙ + ߙ − ሻߚ d𝑋 = − ͺ𝜋𝜎଴ଶ d𝜏                                                 ሺͳ͵ሻ 

 

The variation in time of the dimensionless thickness of porous layer, 𝐻, by squeezing with a 

constant load, results from the differential equation ሺͳ͵ሻ solved with the initial condition ℎ = ℎ଴ ሺ𝐻 =  ͳሻ at ݐ =  Ͳ: 
          𝜏 = 𝜋𝜎଴ଶͺሺߙ − ሻߚ { ߙ𝑉̅଴ଶሺߚ − ሻଶߚ ln [ͳ − ߚ − 𝑉̅଴ሺͳ − 𝐻ሻ]ሺͳ − 𝜎଴ሻሺ𝐻 − 𝜎଴ሻሺͳ − ሻߚ + 

                                                                             + ͳ − 𝐻ሺͳ − 𝜎଴ሻሺ𝐻 − 𝜎଴ሻ [ ሺͳߙ − ʹ𝜎଴ + 𝐻ሻʹሺͳ − 𝜎଴ሻሺ𝐻 − 𝜎଴ሻ − ߙ𝑉̅଴ߚ −  ሺͳͶሻ     {[ߚ

 

Figure ͵ plots the evolution of the squeeze duration function of the thickness, 𝐻 for initial 

compactness, 𝜎଴ = Ͳ.ʹ in the case of dimensionless constant load, 𝜓 = Ͳ.ͳ. As can be seen, the longer 

time for the impacting disk to reach zero porosity corresponds to the lower buffer volume (𝑉̅଴ = ͳሻ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Concluding remarks 

Analytical solutions for squeeze flow at the contact between a disk and a conjugated porous surface 

were developed in the case that pressure on the outer edge of the porous layer is variable (enclosed 

systems). Throughout this paper, the squeeze process of HCPL imbibed with fluids was analyzed for 

two loading cases: constant speed squeeze ሺ𝑤 = ሻ and constant force squeeze ሺ𝐹ݐܿ =  .ሻݐܿ
The results show that for porosities greater than 0.6 the enclosed cell generates significant greater 

forces than the classical open squeeze system. Noted that the lift force increases with increasing of the 
buffer pressure. In addition, the lower is the buffer volume the higher is the lifting force generated by 
solid structure of the porous material during squeeze process. 
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Figure 3. Variation of the dimensionless HCPL thickness, 𝐻 in time for the case 𝜓 = Ͳ.ͳ. 
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Same as in the case of null pressure at the boundaries, it can be observed that the initial value of the 
lift force is not zero due to a reaction of the porous material.  

These theoretical studies prove the lift effect generation and therefore the undeniable applicability 
in impact damping applications. For the future, parametric squeeze models that were studied 
theoretically for the variable pressure case can be used for model validation. 
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Nomenclature 

Latin letters ݀     – characteristic dimension of the porous structure [m]; 𝐷      – porous structural parameter [m
2
]; 𝐹                   – lift force [N]; 𝐹̅        – dimensionless lift force, 𝐹̅ = 𝐹/𝜋𝑅ଶ𝑝଴; ℎ଴     – thickness of the porous material [m]; 𝐻       – dimensionless thickness, 𝐻 = ℎ/ℎ଴; 𝑘               – constant in Kozeny–Carman equation;  𝑝     – pressure [Pa]; 𝑝଴            – initial pressure in the buffer [Pa]; 𝑃   – complex parameter, 𝑃 = 𝜂𝑤𝑅ଶ/𝐷ℎ଴𝑝଴; ݎ      – radial coordinate [m];  𝑅              – disk radius [m]; ݐ        – time [s]; 𝑉଴     – initial volume of the buffer [m
3
]; 𝑉̅଴                   – relative buffer initial volume, 𝑉̅଴ =  𝜋𝑅ଶℎ଴𝜀଴/𝑉଴; 𝑤          – squeeze velocity [m/s]; 

Greek letters 𝜀        – porosity [-]; 𝜂         – viscosity of the liquid [Pa∙s]; 𝜎          – compactness [-]; 𝜏          – dimensionless time (for constant force squeeze), 𝜏 = 𝐹𝐷ݐ/𝜂𝑅ସ; 𝜙         – permeability of the porous layer [m
2
]; 𝜓     – dimensionless constant load, 𝜓 = 𝐹/𝜋𝑅ଶ𝑝଴.  
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