This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Effect of silanized-chitosan on flammability, mechanical, water absorption and biodegradability properties of pseudo-stem banana fiber and montmorillonite filled waste polypropylene biocomposite

, , , , , and

Published under licence by IOP Publishing Ltd
, , Citation W E Prasetyo et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 172 012063 DOI 10.1088/1757-899X/172/1/012063

1757-899X/172/1/012063

Abstract

Growing consciousness for an eco-friendly environment has revived the interest to develop composite fibers from biobased products. In this study, flammability, mechanical, water absorption and biodegradability properties of chitosan filled biocomposite waste polypropylene (wPP) reinforced with pseudo-stem banana fiber (PBF) and montmorillonite (MMt) biocomposites has been conducted investigate. It was successfully processed in solution method. Chitosan was chemically treated with glycidyloxypropyltrimethoxysilane (GPTMS) to improve interfacial adhesion between chitosan and wPP. The chitosan treated with GPTMS content in the biocomposites were varied from 0 to 7% (dry wt. basis). Flammability, tensile strength and water absorption index of biocomposites were measured according to ASTM D635, ASTM D638, and ASTM D570 respectively. To study the nature of its biodegradability, the biocomposites were technically buried in garbage dump land. The results show that the addition of treated chitosan 3-GPTMS has improved thermal properties such as Time to Ignition (TTi), Burning Rate (BR), and Heat release (HR) of treated biocomposites compared with neat PP and untreated biocomposite with treated chitosan. The treated biocomposites exhibit higher tensile strength and Young's modulus, but lower elongation at break compared with neat PP and untreated biocomposites with treated chitosan. The biocomposites show a reduction in the rate of water uptake with higher loading of CH.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.