
IOP Conference Series: Materials
Science and Engineering

     

PAPER • OPEN ACCESS

Synthesis of an algorithm for interference immunity
To cite this article: I N Kartsan et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 155 012019

 

View the article online for updates and enhancements.

You may also like
Design and Performance of a 30/40 GHz
Diplexed Focal Plane for the BICEP Array
Corwin Shiu, Ahmed Soliman, Roger
O’Brient et al.

-

Particle simulations on propagation and
resonance of lower hybrid wave launched
by phased array antenna in linear devices
Guanghui ZHU,  , Qing LI et al.

-

High-performance mid-infrared frequency
upconversion in lithium niobate waveguide
patterned with metasurfaces
Jiao Chi, Hongjun Liu, Nan Huang et al.

-

This content was downloaded from IP address 3.23.127.197 on 04/05/2024 at 01:59

https://doi.org/10.1088/1757-899X/155/1/012019
https://iopscience.iop.org/article/10.3847/1538-4365/ad34d8
https://iopscience.iop.org/article/10.3847/1538-4365/ad34d8
https://iopscience.iop.org/article/10.1088/2058-6272/ac5f80
https://iopscience.iop.org/article/10.1088/2058-6272/ac5f80
https://iopscience.iop.org/article/10.1088/2058-6272/ac5f80
https://iopscience.iop.org/article/10.1088/1361-6463/aaebe7
https://iopscience.iop.org/article/10.1088/1361-6463/aaebe7
https://iopscience.iop.org/article/10.1088/1361-6463/aaebe7
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssCkbpZKnqZXKfhHAuUffpLqb8BV09g7Cc0PpNCwe5hsiy2KYhm5JjipKHs-E-y_wX1d1rxs6poFJVFd1_L7tq2wIlhYIfb1ulvTJE0oOLTcwrAvoqfsq8IecLJF2MRzfanRKYkk-weRwSUUxQ2DO09edL8wvZRrYLk_mRcDetmSNbqlZabpmSznIFQ84BCwngsZoRowyMuZWczCqMK0B8LUZwnoB-JN9fQyjSiEewdVHM-6k40PmR3Tsf8ZSDtdTsZEa38qY0y16Tk3hoqtlk4pHYyq_NPOxjhVAAn_iBwwaKod0GCodHCSO_eQpD2DFrAmMi-5sj7D54gC6SWVFs6ev33ew&sig=Cg0ArKJSzDHsqvK-k0pb&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Synthesis of an algorithm for interference immunity
*
 

 

I N Kartsan
1
, V N Tyapkin

2
, D D Dmitriev

3
,
 
A E Goncharov

4
, 

P V Zelenkov
5
, I V Kovalev

6
 

1 Associate professor, Reshetnev Siberian State Aerospace University, 

Krasnoyarsk, Russia 
2 Associate professor, Siberian Federal University, Krasnoyarsk, Russia 
3 Associate professor, Siberian Federal University, Krasnoyarsk, Russia 
4 Associate professor, Reshetnev Siberian State Aerospace University, 

Krasnoyarsk, Russia 
5 Associate professor, Reshetnev Siberian State Aerospace University, 

Krasnoyarsk, Russia 
6 Professor, Reshetnev Siberian State Aerospace University, Krasnoyarsk, 

Russia 

 

E-mail: kartsan2003@mail.ru 

 

Abstract. This paper discusses the synthesis of an algorithm for adaptive 

interference nulling of an 8-element phased antenna array. An adaptive beam-

forming system has been built on the basis of the algorithm. The paper 

discusses results of experimental functioning of navigation satellite systems 

user equipment fitted with an adaptive phased antenna array in interference 

environments. 
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1. Introduction 

Navigation satellite systems accommodating the demands of various customer groups have 

been increasingly gaining popularity in the last years. Among the most important fields is 

aviation where precise navigational flight data, landing and piloting are provided by satellites. 

Spatial selection methods are considered to be the most promising for interference 

cancelling. These methods are based on the usage of adaptive phased antenna arrays [1]. The 

theoretical part of their usage had been thoroughly studied by scientists both in Russia and 

abroad. However, the usage of phased antenna arrays in user satellite navigation equipment 

has a number of specific features that require further research (exploitation in three frequency 

ranges, low desired signal level and receiving desired signals from various directions). 

In this paper we shall discuss the method for synthesizing an adaptive interference nulling 

algorithm for an 8-element phased antenna array. The algorithm became the basis for building 

a device for noise compensating. The analog part of the adaptive phased antenna array 

comprises 8 antenna modules with 8 radio links connected to them. Signals from the radio 

links arrive at the analog-to-digital converter and further at the digital section; it contains 12 

independent signal processing channels (GLONASS L1, L2). Each channel comprises a beam-
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forming circuit and a digital signal processing channel. The beam-forming arrangement is a 

weighted adder for signals from 8 analog highways. The weighted coefficients are calculated 

by a signal processor in accordance with the formation of the required radiation pattern. 

Performed tests of the 8-element adaptive phased antenna array have demonstrated that the 

synthesized adaptive interference nulling algorithm is highly effective and enables 

suppression of both narrowband and broadband interference. 

The interference suppression coefficient using spatial filtering methods was: 

- 40–45 dB (for harmonic interference); 

- 35–40 dB (for noise interference with a limited spectrum); 

 - 30–35 dB (for broadband interference). 

The widespread usage of various electronic devices and the stable increase in their number 

has become a major issue in terms of the exploited frequency range limitability and the 

electromagnetic environment becoming constantly more complicated. This has become a 

problem for the functioning of electronic devices. In such situations, improving interference 

immunity in the user satellite navigation equipment has become an utmost concern. 

In [2] it had been demonstrated that the choice of the effectiveness criterion with 

consideration for the weighted vector of the phased antenna array does not matter 

significantly. The choice of the control algorithm for building the radiation pattern of the 

array – the algorithm has direct impact on the speed of the transition process and on the 

complexity of implementing the whole system. In [3] an adaptive phased antenna array with 

primary equal amplitude distribution had been discussed. The effectiveness of its adaptive 

algorithm using a basis in the shape of a partial exponential Fourier exponential series had 

been determined in comparison with the optimal algorithm. 

 

2. Algorithm synthesis 

In this paper a synthesis of an algorithm for the 8-element circular phased antenna array 

adaptive nulling system has been performed. 

The received signal in a general situation is described by a vector function that considers 

its description in time and space. Differences between the desired signal and the interfering 

signals are used to distinguish the former from the latter. From a mathematical position these 

differences are conveniently addressed through a dependence of signals and interference from 

parameters, which can be both spatial and time-frequent. Thus, the taken oscillation in the 

general case is 

 

y(t) = x(t, α, β) + n(t, ν), (1) 

 

where x(t, α, β) is the received desired signal vector with parameters α and β; α is the 

informative parameter vector (phase, delay time, Doppler frequency, etc.); β is non-

informative parameter vector that are caused by signal fluctuation; n(t, ν) is the interference 

oscillation vector; ν is the interference parameter vector. 

Let’s assume that the interference is a vector accidental stationary process. The typical law 

of interfering signal oscillation is physically justified for most situations, since the 

interference normalizes in the comparatively narrowband interference paths of receivers. 

The received signal phase in each antenna element of the array will be determined by the 

coordinates of this element, the direction from which interference and signals are transmitted 

and the angle of the beam. 
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In order to determine the vector of the amplitude and phase signal distribution it is 

necessary to know the direction from which the signal comes and the coordinates of the 

antenna element and the radiation pattern. 

The direction from which the signal comes can be supposed as a single vector from a 

selected antenna element or phase center of the array to the signal source [4] 

L(,)= (cos()cos()   sin()cos()    sin())
T

, (2) 

 

where  is the azimuth to the signal source (navigation satellite);  is the angular altitude to 

the source of interference. The structure of the phased antenna array is determined by matrix 

A in which the Cartesian axles x, y, z are written in the k column of the i antenna element in 

relation to the phase center of the array, which matches the circumference center of the radius 

(R) on which the antenna elements are placed. 

 

2 2 2 2
0 1 0 1

2 2 2 2

2 2 2 2
1 0 1 0

2 2 2 2

0 0 0 0 0 0 0 0

R

  

    A

, 

(3) 

 

Let’s suppose that the phased antenna array elements are not targeted; their position is 

shown in Fig. 1. 

 

 
Figure 1. Distribution of antenna elements in the array 

 

The vector from the phase center of the array (its coordinates for this case are (0 0 0)
Т
) to 

the k element a difference in the coordinates of the circumference center and array elements. 

In this case, it is just the k column of matrix A, i.e. A
<k>

. Thus, the vector of the amplitude and 

phase distribution through phase elements and setting beam direction to the i signal source 

shall be determined by the following 

where 
1(ψ,γ)F  is the amplitude and phase radiation pattern of  

 

 

the k element of the array; 1( , (ψ, γ))R L 
A  is the dot product. 

Spatial processing algorithms (5) are typically modified in actual practice 

 

    1 8

1 8(ψ, γ) (ψ, γ) exp 2π ( , (ψ, γ)) ... (ψ, γ) exp 2π ( , (ψ, γ))F j R L F j R L         H A A , (4) 
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1( ) (α) ( ) (α),T Tt t


   Y Y Ф X Y R  (5) 

where ( )tY  is the output signal of the adaptive antenna array; 
T

Y  is the vector of the input 

signal of the array; 
1

Φ  is the inverse correlative interference matrix; (α)R  is the weighted 

coefficients vector. For this the requirements for a simpler construction of a spatial processing 

device are considered. The algorithm is modified in terms of multiplication of the vector-

columns of the received  tY
 and anticipated (α)X  oscillations by a transforming matrix A 

[5]. The transformation of the vector-column can be determined by the formula 

пр пр( ) ( ),     (α) (α).t t Y AY X AX  (6) 

The correlative matrix Φ  and the inverted 
1

Φ  are also transformed. The weighted vector-

column (α)R  undergoes transformation as well. The transformed values considering (6) shall 

equal: 
*

пр пр *

пр

( ) ( )
,

2

T

T

П

t t
M

 
  

 

Y Y
Ф AФA

 

1 * 1 1

пр пр пр пр( ) ,     (α) (α).T   Ф AФA R Ф X  
(7) 

The transformation structure of the spatial processing algorithm is identical to the 

transformed 

пр пр пр пр( ) ( ) (α) ( )Tt t t  Y Y R Y . (8) 

When comparing algorithms (5) and (8) it is easy to see that they are totally equivalent 

providing that the transformation matrix A has an inverted 1
A . So, if we substitute in (8) 

values 
пр ( )tY  and 

пр (α)R  from (6) and (7), the result shall be 

1 1 * * 1 * *

пр( ) ( ) ( ) ( ) (α) ( ) (α) ( )T Tt t t  

  Y A A Ф A A X Y R Y . (9) 

Matrix A  is used for building circuits with a main receiving channel and (М–1) 

compensating receiving channel with low-directivity features of the directivity. When 

selecting a transforming matrix it is necessary to consider the requirement for decoupling of 

the main and compensating channels for the desired signal. This is one of the possible 

examples for such a matrix: 
* * * * *

1 2 3 1

* *

1 2

* *

2 3

* *

1

(α) (α) (α) (α) (α)

(α) (α) 0 0 0

0 (α) (α) 0 0

0 0 0 (α) (α)

m m

m m







 



X X X X X

X X

A X X

X X

. 

(10) 

The transformed vector-column пр пр( ) ( )it tY Y
 of received oscillations ( )tY  switches on 

the voltage of the main channel  

*

пр1

1

( ) ( ) (α)
M

i i

i

t t


Y Y X . (11) 

And the voltage of the compensating channels 
* *

пр 1 1( ) ( ) (α) ( ) (α)ki i i i it t t   Y Y X Y X  (12) 
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The expected oscillation (α)X  is transformed to  

пр(α) (α) 0 0 0
T

M X AX  (13) 

where *

1

(α) (α)
M

i i

i

M


X X . 

The zero value of the elements of vector-column 
пр (α)X , beginning from the second 

indicate to the decoupling of the main and compensating channels for the desired signal. The 

latter is a mechanism for forming compensating channels with differential schemes. Due to 

this fact, a null is formed in the resulting directivity characteristics of the compensating 

channels. The angular position of this null matches the expected direction of the desired signal 

input . 

The expression for the transformed weighted vector-column of spatial processing 
пр (α)R  

can be found using the following matrix equation  

 

пр пр пр(α) (α)Ф R X . (14) 

 

It is convenient to solve, writing down прФ  and the vector-column 
пр(α)R  in the 

following manner 

 
*

пр11 пр
пр пр 1 2

пр1 пр

            (α)

Т
T

к

 
Ф Ф

Ф R R R
Ф Ф

, 
(15) 

 

where 
пр11Ф  is the total interference and noise dispersion at output of the main receiving 

channel 

 
*

пр1 пр1
пр11

( ) ( )

2
П

t t
M

 
 
  

Y Y
Ф ; (16) 

 

пр1Ф  is the vector-column of relative correlative moments of interference voltage in the 

compensating channels and main channel 

 
*

пр пр1
пр1

( ) ( )
,    2

2

k
П

t t
M k M

 
  
  

Y Y
Ф ; (17) 

 

пркФ  is the correlative interference matrix of the compensating channels 

 
*

пр пр
пр

( ) ( )

2

T
k k

k П

t t
M

 
 
  

Y Y
Ф ; (18) 
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1R  and 2R  represent the element of the weighted vector of the main channel and the 

vector-column of the weighted coefficients of the compensating channels respectively. 

Substituting (15–18) in matrix equation (14) we produce a system of two equations 

 
*

пр11 1 пр1 2

пр1 1 пр 2 0

Т

k

M  


 

Ф R Ф R

Ф R Ф R

, (19) 

 

Solving this system in relation to 1R  and 2R , we shall get 

 

1 * 1
пр11 пр1 пр пр1

1
2 пр пр1 1

( )Т
k

k

M





 




 

R
Ф Ф Ф Ф

R Ф Ф R

, 
(20) 

 

From (20) we can see that the first element of the weighted vector is the real quality and 

functions as a normalization factor. Without quality loss for detection this factor can be taken 

as equal to zero, shifting to the normalizing weighted vector  пр

1

αR

R

. According to (20), the 

latter shall be equal  

 

12
пр пр1

1
k


   

R
R Ф Ф

R
, (21) 

 

The output voltage of the processing device with a designated main channel is determined 

by the formula 

 
* *

пр1 пр( ) ( )T
kt t  Y Y Y R , (22) 

 

The device for compensating interference received by the side lobes of the antenna’s 

radiation pattern is built with a synthesized algorithm; the device is shown in Fig. 2. 

 

 
Figure 2. Adaptive phased antenna array beam-forming system 
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The analog sector of the adaptive phased antenna array comprises 8 antenna modules with 

8 connected radio paths. Signals from the radio paths are transmitted to the analog-to-digital 

converter and then to the digital sector. The digital sector comprises 12 independent channels 

for processing L1, L2, GLONASS signals. Each channel consists of a beam-forming network 

and a digital signal processing channel. The beam-forming network is a weighted signal adder 

for signal from 8 analog paths. Weighted coefficients are calculated by the signal processor 

according to the desired radiation pattern. Particularly, during a high-precision measuring 

mode the weighted coefficients are selected to compensate the difference in the desired signal 

passage between antennas: thus, desired signals arrive at the adder with one phase. An 

example of such a mode for adaptive phased antenna arrays is discussed in [6]. 

Let’s demonstrate the test results of a model of anti-interference navigation satellite 

systems user equipment with an 8-element phased antenna array. Comparison was performed 

on type MRK-33 user equipment.  

The anti-interference test is performed in two modes of the navigation satellite system: 

signal grabbing and signal tracking of navigation satellite signals. It is necessary to calibrate 

the measuring circuits, using the method described in [7]. 

The evaluation criterion for interference immunity during natural tests is such a level of the 

interfering signal during which there is an absence of a solution to the navigation problem for 

at least four satellites that are in tracking and grabbing modes. Interference immunity is 

evaluated with and without using spatial filtering methods. 

Increasing the interference level with a spacing of 1 dB from the original value, a value 

was recorded during which there was a loss in tracking (navigation data output stopped) – the 

level of suppressing the tracking scheme. Counting is begun from the point when one satellite 

is excluded from processing; it is continued until all prior visible satellites are excluded. 

To evaluate the interference immunity of a phased antenna array in a grabbing mode, the 

interfering signal level is set at 10 dB higher than the level of tracking loss. An attenuator is 

used to gradually decrease the interference level with a spacing of 1 dB at output; grabbing of 

the navigational signal and navigational sightings were recorded. 

In Figs. 3–5 the output spectra of signals at an intermediate frequency without any spatial 

processing (blue highlighting) is demonstrated; spatial filtering is shown in red. 

Approximately 100 000 samples were used to build the spectra. 

 

 
Figure 3. Output spectra of signals under narrowband interference attack:  

blue – without spatial selection; red – with spacial selection 
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For the experiment on the interference immunity of the user navigation equipment under 

harmonic interference attack, the initial level of interference power was set at 10 dB lower 

than the minimal level for narrowband interference for devices lacking any interference 

protection. This issue was discussed in [8]. 

Fig 4 demonstrates the output spectra of signals attacked by noise interference with a 

limited spectrum. 

 

 
Figure 4. Output spectra of signals under noise interference attack with a limited spectrum: 

blue – without spatial selection; red – with spatial selection 

 

Employing spatial selection methods during noise interference attack with limited 

spectrum (Fig. 4) provides an intereference suppression coefficient of 30 – 35 dB for user 

equipment. 

In Fig 5 the input spectra of signals attacked by broadband noise interference is 

demonstrated. 

 

 
Figure 5. Imput spectra of signals unter broadband noise interference attack:  

 blue – without spatial selection; red – with spatial selection 

 

The analysis of the graphs in Fig. 5 shows that spatial filtering sustains the interference 

suppression coefficient for broadband interference at 25–30 dB higher for user navigation 

equipment with an adaptive phased antenna array than for equipment without any interference 

protection. 

 

3. Conclusion 

Thus, the performed natural experimentations of an 8-element adaptive phased antenna 

array demonstrate that the synthesized algorithm for adaptive nulling of phased antenna arrays 
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is highly effective and is capable of suppressing both narrowband and broadband interfering 

signals. 

The interference suppression coefficient using spatial filtering methods was: 

- 40–45 dB for harmonic interference attack; 

- 30–35 dB for noise interference attack with a limited spectrum; 

- 25–30 dB for broadband interference attack. 
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