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Abstract. This paper focuses on the development of a space antenna transformable reflector 

100 m in diameter.  Accuracy requirements to the materials characterization are based on the 

thermal state analysis.  The paper contains methods and results of thermal physical and optical 

characterization of the main construction materials to use in the transformable reflector. 

1.  Introduction 

Space communication development, natural resources exploration, and space observations require 

deployable space reflectors to be developed.  According to AstroMesh estimates, the existing 

technology enables mesh reflectors with a diameter of up to 50 m within the next decade. 

Low linear density, 0.3 kg/m
2
 in the best cases, is achieved by using radio-reflecting metal meshes 

made from tungsten, molybdenum or nichrome wires of 15-50 microns in diameter.  The reflecting 

surface is geometrically stable, owing to bracing wires, hinges, props, struts, and power cables.  The 

load-bearing elements are made in the form of straight or curved rods from polymer matrix composite 

materials, primarily carbon fibre-reinforced plastics. 

The greatest challenge when designing space antenna reflectors is to ensure high dimensional 

stability under varying temperatures and temperature differences in the orbit.  The permissible 

variation in shape and size should not exceed Λ/16-Λ/50, where Λ is the radiation wavelength.  In the 

L frequency band, where transformable reflectors are mostly used, these variations constitute 

4­14 mm.  A transformable reflector should be compactly stowed under the rocket booster fairing, 

whose diameter normally does not exceed 4 m. 

At this stage of research, a theoretical and technological foundation must be created in the field of 

designing and manufacturing large transformable antenna reflectors up to 100 m in diameter, with a 

high-precision reflecting surface for long-life spacecraft. 

2.  The current state of research in the field of transformable reflectors of space mirror antennas  

Large transformable antenna reflectors are currently being developed in Russia, the USA, Europe, 

China and Japan. 

The Russian Joint Stock Company (JSC) Academician M.F. Reshetnev Information Satellite 

Systems installs umbrella-type mesh reflectors onto the Luch-5 geostationary relay satellites [1, 2].  
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For example, the Luch 5B has two antennas with umbrella-type mesh reflectors 4.2 m in diameter that 

can focus on low-orbit spacecraft, capture and follow them along the flight path.  One of these 

antennas operates in Ku-band, the other in S-band. 

The JSC S.P. Korolev Rocket and Space Corporation “Energia” has developed several distinctive 

designs of large transformable reflectors for space antennas [3, 4].  A 6.4 m by 5.2 m model of one of 

the reflectors was produced by JSC NPO “EGS” (a joint enterprise of “Energia” and the Georgian 

Polytechnical Institute, Georgia) and tested in the Mir orbital station in 1999 (figure 1). 

 

Figure 1. Mesh reflector prototype during orbital testing at the Mir space station 

(JSC NPO “EGS”, Russia – Georgia). 

The JSC Special Design Bureau of Moscow Power Engineering Institute (OKB MEI) has 

developed transformable reflectors for radar space antennas (figure 2).  ТКСА-6К antennas with 6 m 

by 2.8 m reflectors were successfully tested in orbit in 1985, as part of synthetic aperture radar 

systems onboard the Kosmos 1689 spacecraft, and in 1996, onboard the Priroda module of the Mir 

space station. The improved antennas are to be used as part of the Kondor remote probing satellites by 

the JSC Military Industrial Corporation Scientific-Production Association of Machine building (MIC 

SPA) “Mashinostroyenia” [5].  Kosmos-2487, the first satellite of this type deployed in 2013, had a 6 

m by 7 m antenna reflector.  The hollow rods of the load-bearing frame were not made from metal, as 

before, but from carbon fibre-reinforced plastics. The overall reflector mass including hold-up 

mechanisms and all structural elements did not exceed 50 kg. The multi-beam feed system enabled 

both the beam mode and SCANSAR mode. 

The USA-based Harris Corporation equipped the TerreStar, TDRS, ACeS, SDARS satellites with 

the umbrella-type transformable reflectors, with diameter up to 18 m (figure 3) [6].  The AstroMesh, 

Northrop Grumman branch, developed the largest transformable hoop type (membrane-cable) 
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reflectors for the Thuraya-3, MBCO, Inmarsat, and GlobalStar satellites.  AM-Lite, AM, AM-1, AM-2 

type reflectors have apertures of 3-8 m, 12 m, 6-25 m and 18-50 m respectively (figure 4) [7, 8]. 

Specialists in a number of companies in Europe and Japan [9-12] are also working on the 

development of large transformable reflector. 

3.  Reflector structural design 

Contemporary space antenna reflectors comprise load-bearing rod elements to deploy the reflector into 

the operating configuration.  They form the frame for the metal mesh comprising the radio-reflecting 

surface. Another essential element is polymer ropes, adjusting and supporting the mesh surface and 

metallic tips jointing the ropes to the frame. 

 

 

 

Figure 2. Mesh reflector of the 

space antenna during ground tests 

(JSC “OKB MEI”, Russia). 

 

 

 

Figure 3. Deployed TerreStar-1 

18m reflector at Harris facility. 

 

 

Designing transformable reflectors for space antennas is a complex interdisciplinary problem, 

where the initial stages are concerned with the thermal analysis and materials science issues.  One of 

the design layouts for a reflector 100 m in diameter is analyzed below (figure 5).  The load-bearing 

structure comprises carbon composite spokes that unfurl in the orbit forming the supporting ring for 

the mesh deployment.  The parabolic shape is enabled by the tensioning ropes. 
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4.  Reflector temperature state simulation 

The flight of a spacecraft with a reflector, on a geostationary orbit, at the March equinox moment was 

considered.  It was assumed that the rotation axis of the parabolic reflector shell is directed toward the 

Earth and its transverse axis coincides with the spacecraft velocity vector. 

 

 

 

Figure 4. Deployed Reflector at AstroMech Corporation. 

 

 

 
Figure 5.  Reflector design layout. 

 

 

The mesh was assumed to reflect, absorb and transmit the incident direct and Earth-reflected solar 

radiation.  The thermal physical anisotropy of the carbon composite frame was taken into account.  
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(a) (b) 

Figure 6. (a) Incident and (b) transmitted solar radiation flux when the angular position  

of the reflector in orbit, relative to the Earth-Sun line, is 120°, W/m
2
 

 

(a) (b) 

Figure 7. (a) Intrinsic and (b) Earth-reflected solar radiation flux when the angular position  

of the reflector in orbit, relative to the Earth-Sun line, is 120°, W/m
2
 

 

A finite-element model of the reflector was built, using approximately 60,000 3D tetragonal 

elements for composite arms, and approximately 30,000 2D elements for the grid-curtain and cables.  

The thermal contacts between separate structure elements were considered to be ideal.  The surface of 

the carbon fire reinforced plastic (CFRP) was considered to be diffusely radiating, and the cables 
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semi-transparent for downward radiation.  The thermal-physical properties of CFRP were taken to be: 

density 1550 kg/m3, and specific heat 1000 J/(kg·K).  The thermal conductivity across the fibres was 

taken to be 72 W/(m·K), and the values of thermal conductivity along the fibres was variable: 101, 72, 

36, 18 and 9 W/(m K).  The emissivity factor and radiation capacity for CFRP were equal to 0.7.  The 

density of the cable material was 1000 kg/m3, specific heat 800 J/(kg·K), and thermal conductivity 

1 W/(m·K).  The cable emissivity was equal to 0.05, its radiation absorptivity 0.50, and the cable 

material transmitivity was 0.45. 

 

 

 

(a) (b) 

 

(c) (d) 

Figure 8. Reflector temperature field, °С when the angular position  

of the reflector in orbit, relative to the Earth-Sun line, is (a) 90°, (b) 120°, (c) 180° and (d) 300°. 
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The metal mesh was modelled as a partially transparent shell with the thickness 0.025 mm 

produced from material with density 3200 kg/m
3
, specific heat 500 J/(kg·K), and thermal conductivity 

varying in the range from 0.45 to 5.40 W/(m∙K).  The metal mesh had transmission capability 0.85, 

and its emmisivity and radiation absorptivity were equal to 0.09. 

Incident and Earth-reflected solar radiation flux and flow of the Earth thermal radiation were 

defined for the temperature state simulation using the Siemens PLM NX 10finite element analysis 

package (figures 6, 7).  Thermal state modelling also performed with the Siemens PLM NX 10 

software package demonstrated temperature differences in the reflector structure as high as 190 K 

(figure 8). 

5.  Results analysis 

When designing a reflector, reliable initial data on thermal physical and optical materials 

characteristics are essential.  Unfortunately, there is limited information on the thermal conductivity 

coefficient in the reinforcement plane for composite materials, which is due to the absence of a 

standardized methodology.  In the case of the load-bearing structure, we should calculate the possible 

effect of its thermal conductivity coefficient error on its temperature field.  Figure 9 shows the 

temperature field of the load-bearing frame at different values of the rod material thermal conductivity 

coefficient.  It is evident that the difference in the spoke temperature values reaches 30 K, which 

indicates the need to increase the accuracy of the thermal conductivity estimation.  

 

 

Figure 9. Temperature 

field, °C, of the reflector 

rod at longitudinal 

thermal conductivity 

72 W/(m·K), when the 

angular position  

of the reflector in orbit, 

relative to the Earth-Sun 

line, is 120° . 

 

In order to compensate for the deficiencies in the reference literature the authors have developed 

novel methods of optical characterization of metallic meshes and polymer ropes, as well as a method 

to determine the thermal conductivity of composite materials directly in the full-scale structural 

elements in the form of rods and plates [13-17]. 

The fact is that the traditional methods [18-21] allow defining of thermal conductivity of 

composites only in the normal direction λ.  Experimental samples are round or quadrangular in shape 
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and machined very carefully.  Information about λ as well as determination accuracy is not of the 

utmost interest when modelling thermal regimes of thin-walled space structures due to a slight 

temperature difference through-the-thickness that is equal to just a few degrees.  The value of the 

longitudinal thermal conductivity (in-plane direction along the fibres) λ is much more important 

because it influences to the temperature difference over the surface and along the structure.  A 

peculiarity of this method for defining λ is the possibility to use full-size structures such as hollow 

rods [13, 14].  At the same time, this method is suitable for cables thermal conductivity research.  

Experiments could be conducted with one-sided [13, 14] and two-sided [15-17] heating of samples.  

The temperature difference is generated by electrical heating elements and measured by 

thermocouples or by a thermal imager.  A program for solving the nonlinear inverse heat conduction 

problem is used for the interpretation of experimental data [22-23]. 

Obtaining reliable data on the mesh thermal conductivity coefficient is a considerable challenge, 

because of its flexibility when measuring tension.  At present, there is practically no information on 

the thermal conductivity coefficient of the mesh.  The thermal conductivity varying in the range 0.45 

to 5.40 W/(m∙K) indicates that it has only a very slight effect on the reflector thermal state.  This must 

be a result of the fact that with the reflector being large and the mesh being thin, each point of the 

mesh is close to radiative equilibrium, when the conductive fluxes are significantly smaller than the 

radiative ones. 

At the same time, the variability of the mesh optical characteristics indicates its significant effect 

on the reflector thermal state (figure 10). 

 

 

 

(a) (b) 

Figure 10. Mesh temperature field, °C, at different values of optical characteristics at time 28800 sec. 

Thermal conductivity – 3.6 W/(m·K) 

a) Emissivity and absorptivity – 0.7, transmittivity – 0.85 

b) Emissivity – 0.135, absorptivity –0.09, transmittivity – 0.85 
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6.  Conclusions 

Several transformable reflectors layouts for large diameter space antennas have been considered.  The 

common feature for all the layouts in question is the combination of the load-bearing elements from 

carbon fibre-reinforced plastics, a metallic radio reflecting mesh and polymer ropes for the surface 

shape adjustment 

The thermal state of a 100 m diameter reflector was modelled for the geostationary orbit, which 

demonstrated a temperature difference of 190 K in the reflector structure. 

The composite material thermal conductivity coefficient was demonstrated to have a significant 

influence on its temperature state.  

At the same time, the mesh thermal conductivity coefficient influence is insignificant, with the data 

on its optical characteristics being of much greater importance. 
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