OPEN ACCESS

Radiation-induced defects in As-Sb-S glass

To cite this article: V Balitska et al 2010 IOP Conf. Ser.: Mater. Sci. Eng. 15 012054

View the article online for updates and enhancements.

You may also like

- Strengthening of the reinforced concrete tank of anaerobic purification plants with the manufacture of biogas, damaged as a result of design and construction errors A Kramarchuk, B Ilnytskyy, D Hladyshev et al.
- Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier R Stoika, N Boiko, Y Senkiv et al.

- Prototype of photovoltaic system with dual axis tracker and flat mirror concentrators V Boyarchuk, V Syrotiuk, R Kuzminsky et al.

DISCOVER how sustainability intersects with electrochemistry & solid state science research

This content was downloaded from IP address 3.147.66.178 on 05/05/2024 at 09:32

Radiation-induced defects in As-Sb-S glass

V Balitska^{1,2}, Ya Shpotyuk^{1,3}, J Filipecki⁴ and O Shpotyuk^{1,4}

- ¹ Lviv Scientific Research Institute of Materials of SRC "Carat", 202, Stryjska str., Lviv, 79031, Ukraine
- ² Lviv Lviv State University of Vital Function Safety, 35, Kleparivska str., Lviv, 79023, Ukraine
- ³ The Ivan Franko National University of Lviv, 50, Dragomanova str., Lviv, 79005, Ukraine
- ⁴ Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, 42-200, Poland

E-mail: shpotyuk@novas.lviv.ua

Abstract. Defect-related instability was studied in γ -irradiated $(As_2S_3)_{1-x}(Sb_2S_3)_x$ glasses (x=0, 0.1, 0.2 and 0.3) using positron annihilation lifetime spectroscopy treated within high-measurement statistics. The observed decrease in average positron lifetime in the studied glasses is explained as a renovation of destroyed covalent chemical bonds after irradiation. This process is governed by monomolecular relaxation kinetics, being described in the framework of universal configuration-coordinate model.

1. Introduction

For a long time, chalcogenide glasses (ChG) have attracted a high interest of researchers because of their sensitivity to external influences, such as absorbed light photoexposure and high-energy ionizing irradiation [1-3]. This unique ability is connected with specific type of radiation-induced structural defects proper to ChG, so-called coordinative topological defects (CTD), appeared as pairs of positively-charged over- and negatively-charged under-coordinated atoms [1,3]. Non-exponential post-irradiation instability observed in just-irradiated ChG was ascribed to different types of CTD [3], their relaxation kinetics tending towards bimolecular one in Ge-based [4] and single-exponential monomolecular one in As-based ChG [5].

In this work, we try to resolve the origin of this principal mismatch in structural interpretation of the above instabilities using results of positron annihilation lifetime (PAL) study for As-Sb-S ChG.

2. Experimental

Glassy g- $(As_2S_3)_{1-x}(Sb_2S_3)_x$ samples (x=0, 0.1, 0.2, 0.3) were prepared by conventional melt-quenching route from high-purity (99,9999 %) initial elemental ingredients [1,3]. The obtained ingots were cut into ~1 mm disks and then polished to a high optical quality. To remove mechanical strains appeared after quick cooling, the ChG samples were additionally annealed during 1 hour at the temperature of 10-20 K below their glass transition.

Radiation treatment of the samples was conducted by γ -quanta with 1.25 MeV energy and 2 MGy absorbed dose in normal conditions of stationary radiation field created in a closed cylindrical cavity

11th Europhysical Conference on Defects in Insulating Materials (EURODI	M 2010) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 15 (2010) 012054	doi:10.1088/1757-899X/15/1/012054

surrounded by ⁶⁰Co sources. No special measures were taken to prevent uncontrolled annealing of the samples, but maximum temperature in the irradiating chamber did not exceed 320-330 K.

PAL measurements were performed at room temperature in different moments after irradiation using conventional fast-fast coincidence system with an ORTEC spectrometer [6,7]. The radioactive ²²Na isotope was used as positron source, placed between two sandwiched ChG samples. The PAL spectra were recorded in high-measurement statistics utilizing more than 5 millions of elementary annihilation events, the values of average positron lifetimes τ_{av} being taken as numerical criterion for occurred radiation-induced changes [8].

3. Results and discussion

0.2

0.3

The average positron lifetimes τ_{av} of non-irradiated $g(As_2S_3)_{1-x}(Sb_2S_3)_x$ and the same samples measured 1 day just after irradiation and 1 month later are presented in table 1.

for g-(As ₂ S ₃) _{1-x} (Sb ₂ S ₃) _x before and after γ -irradiation.				
ChG	Average positron lifetime τ_{av} , ns			
composition,	before	1 day	1 month	
Х	γ-irradiation	after γ -irradiation	after y-irradiation	
0.0	0.339	0.331	0.322	
0.1	0.333	0.327	0.320	

0.323

0.319

0.318

0.316

0.328

0.324

Table 1. Average positron lifetimes τ_{av} determined in high-measurement statistics for g-(As₂S₃)_{1-x}(Sb₂S₃)_x before and after γ -irradiation.

As it testified from table 1, the decrease in average positron lifetime τ_{av} was observed in all samples tested 1 day after γ -irradiation, this effect being inhibited with Sb₂S₃ content (increase in x parameter within studied system). The same samples studied 1 month after irradiation show additional decrease in τ_{av} with analogous compositional trend. So the most essential changes occur in g-As₂S₃: the initial average positron lifetime of 0.339 ns drops to 0.331 ns in just after-irradiation state with further tending towards saturation to 0.322 ns during 1-month natural storage.

The observed changes testify that structural shrinkage followed by further enlargement during postirradiation storage dominates in γ -irradiated g-(As₂S₃)_{1-x}(Sb₂S₃)_x samples. It means that radiation effect of molar volume decrease is non-elemental one, consisting in, at least, two opposite components. Indeed, at the basis of previous physical ageing and radiation-induced hardening study in ChG [3,9], it can be supposed that weakening of covalent bonding followed by atomic shrinkage is caused by prolonged high-energy irradiation. Apart from this radiation-induced atomic densification, the simultaneous CTD formation accompanied by additional free volume appearance owing to lack of one covalent bond on under-coordinated atom occurs. In general, the former process dominates causing overall decrease in τ_{av} values in γ -irradiated ChG. The further renovation in covalent bonding leads to annihilation of under-coordinated CTD correspondingly to the observed decrease in τ_{av} in 1-month stored ChG samples (table 1).

By accepting that metastable $(As_4^+; S_1^-)$ atomic pairs (the subscript in CTD signature denotes electric charge of atom, while the superscript denotes local atomic coordination) formed as result of heteropolar As-S bond switching into homopolar As-As one compose the main channel of externally-induced CTD in stoichiometric g-As₂S₃ [3,10], the overall topological scheme of radiation-induced CTD formation can be presented as it demonstrated on figure 1.

11th Europhysical Conference on Defects in Insulating Materials (EURODIM 2010)IOP PublishingIOP Conf. Series: Materials Science and Engineering 15 (2010) 012054doi:10.1088/1757-899X/15/1/012054

Figure 1. Defect interplay in stoichiometric g-As₂S₃.

The weakening in covalent linking owing to high-energy γ -irradiation-induced excitation of electron sub-system in g-As₂S₃ results in destruction of basic covalent bonds of heteropolar As-S type. This process is reflected by X \rightarrow U transition in figure 1. It attains a homolitical character due to difference in electronegativities of As and S atoms [1], leading to under-coordinated (As₂⁺;S₁⁻) atomic pairs being formed *in-situ* in glassy matrix. So the overall number of Lagrangian constraints per atom n_c is released in ChG during γ -irradiation. Thus, for atomic configurations shown in figure 1, this reduction in n_c achieves more than 10 %, providing network transformation from topologically optimally-constrained (n_c=3.00) to under-constrained or floppy backbone (n_c=2.68).

Thereby, under a prolonged irradiation (more than a few days), the ChG samples are involved in significant physical ageing, accompanied by corresponding decrease in their configurational entropy, enthalpy or free volume. This process can be characterized as *in-situ* γ -induced atomic densification or shrinkage. The created metastability is decomposed after irradiation tending towards initial X state owing to renovation of destroyed covalent chemical bond (V₁ \rightarrow U \rightarrow X transformation on figure 1). But latter structural transformation is only partly reversible at ambient conditions, provided temperature is far enough from glass transition region (the full restoration into initial state X is expected to be achieved beyond T_g). Alternatively, the averaged covalent linking of glassy matrix can be restored through new homopolar As-As covalent bonds, which are accepted as wrong ones for chemically-ordered stoichiometric g-As₂S₃ network. The intimate valence alternative pair or, alternatively, conjugated pair (CP) of (As₄⁺;S₁⁻) type (V₂ state on figure 1) is created during this process, it being correspondingly split into random pair (RP) owing to type-conserving (As-S) \rightarrow (As-S) bond

11th Europhysical Conference on Defects in Insulating Materials (EUROD)	M 2010) IOP Publis	hing
IOP Conf. Series: Materials Science and Engineering 15 (2010) 012054	doi:10.1088/1757-899X/15/1/012	2054

switching (V₂ \rightarrow W transition on figure 1) or returned into non-defect initial state X owing to backward (As-As) \rightarrow (As-S) bond switching (V₂ \rightarrow X transition on figure 1). Whichever the case, the glassy matrix is subjected to densification due to significant radiation-induced atomic shrinkage, not fully restored at ambient temperature. These processes are mutually interconnected in dependence on intrinsic free volume distribution in ChG.

In Ge-based ChG, characterized by large input of free volume, the more decisive role belongs to CP and RP of $(As_4^+; S_1^-)$ type. The former determine post-irradiation metastability with character time constants as high as 2-3 months [4], while the latter are responsible for thermally-reversible metastability with character thresholds near 110-120 °C [3].

These CTD-interplay processes cardinally differ in As-based ChG. In respect to Popescu's calculations for different structural computer models of ChG [11], the more shallow nanovoids with radii below 0.3 nm can be distinguished in g-As₂S(Se)₃. The above $(As_4^+;S_1^-)$ CP do not stabilize under these conditions, they being effectively transformed into RP or non-defect normally-coordinated fragments. But the part of under-coordinated $(As_2^+;S_1^-)$ defects left after irradiation, forming the channel of quick post-radiation relaxation of single-exponential (monomolecular) type with character time constants of a few days [3].

Just this last metastability is responsible for τ_{av} evolution in table 1. Let's imagine the initial molar volume of non-irradiated ChG to be V₀. Two independent *in-situ* processes can be attributed to this value: ΔV_0^{1} – the decrease in V₀ caused by "shrinkage" of under-constrained ChG network, and ΔV_0^{2} – the increase in V₀ owing to lack of one covalent bond localized on under-coordinated atom (figure 2). Therefore, the molar volume of ChG is effectively reduced on overall value of $(\Delta V_0^{1} - \Delta V_0^{2})$. Under normal conditions, the created $(As_2^+;S_1^-)$ CP annihilates rapidly for a few days after irradiation turn-off with character monomolecular kinetics, like as in similar case of electron-induced dichroism [12].

Figure 2. Under-irradiation (*in-situ*) and post-irradiation (*ex-situ*) evolution of free volume in g-As₂S₃ caused by under-coordinated topological defects.

11th Europhysical Conference on Defects in Insulating Materials (EURODI	M 2010) IOP Publishi	ng
IOP Conf. Series: Materials Science and Engineering 15 (2010) 012054	doi:10.1088/1757-899X/15/1/0120	54

These CDT-related interplay processes can be well illustrated with configuration-coordinate model in figure 3. The first element X of this model is associated with ground or initial structural state of ChG, representing itself as multi-well quasi-parabola, while the next excited state U can be presented by single parabola with wide-stretched edges in accordance to strong electron-phonon coupling proper to covalent-bonded ChG networks [1]. It should be noted this short-term state is always single-well despite a variety of external influences applied to ChG. Only vertical radiation-induced Frank-Condon-type transitions are possible between ground sub-states X, Y and Z₁, ... and excited state U. The third element of the above model is associated with different CTD-related metastable states (V₁, V₂, W, ...), which can be presented as a parabolic-shaped curve crossing with both excited U and ground-state parabolas X in points B and A, respectively, and splitting into 3 (or even more) paraboliclike sub-states in respect to different types of possible CTD configurations. In general case of g-As₂S₃, the V₁ state corresponds to (As₂⁺;S₁⁻) CP, V₂ state corresponds to (As₄⁺;S₁⁻) CP and W state corresponds to (As₄⁺;S₁⁻) RP.

Figure 3. Configuration-coordinate model describing CTD-related metastabilities in g-As₂S₃.

Because CTD in V₁ state have very short lifetimes, the following transitions become possible: if $\Delta E_{V_1B} \ge \Delta E_{V_1A} \approx kT$, the $(As_2^+;S_1^-)$ CP transforms towards A point into V₂ or X state; if $\Delta E_{V_1B} << \Delta E_{V_1A} \approx kT$, the $(As_2^+;S_1^-)$ CP turns back through B point into U state. In both cases, the destroyed covalent bond will renew, and corresponding relaxation process attains a monomolecular (threshold-type) behavior. The V₂ state correspondingly decays through A point into initial X state or,

11th Europhysical Conference on Defects in Insulating Materials (EUROD	DIM 2010)	IOP Publishing
IOP Conf. Series: Materials Science and Engineering 15 (2010) 012054	doi:10.1088/1	1757-899X/15/1/012054

alternatively, into W state, provided $\Delta E_{v_2A} \approx \Delta E_{v_2W} \approx kT$. In the first case, the inverse As–As \rightarrow As–S bond-changing switching followed by spontaneous (As₄⁺;S₁⁻) CP annihilation occurs, while in the second case the bond-conserving As–S \rightarrow As–As switching followed by (As₄⁺;S₁⁻) RP appearance takes place, the both processes being described by bimolecular relaxation kinetics.

It should be noted that CTD-related processes in $g-As_2S_3-Sb_2S_3$ were exemplified by ones character only for stoichiometric $g-As_2S_3$. In fact, this is not a significant limiting factor, since the corresponding in-put of similar processes in Sb_2S_3 -based sub-system is relatively small owing to instability of CTD localized on Sb atoms (due to significant decrease in electron correlation energy for corresponding defect pairs) [3]. In other words, the Sb_2S_3 content in ChG within quasibinary $g-As_2S_3-Sb_2S_3$ system determines only the weakening in radiation-induced CTD formation.

4. Conclusion

The post-irradiation relaxation in $g(As_2S_3)_{1-x}(Sb_2S_3)_x$ attains an activation exponential character owing to spontaneous renovation of destroyed covalent chemical bonds. The corresponding relaxation times are only slightly modified with glass composition, being quite close to a few days, which is supposed to be associated with radiation defects only in As-based sub-matrix. The observed post-irradiation interplay in defect content is described within universal configuration-coordinate model of initial and externally-induced metastabilities in ChG.

Acknowledgments

This work was partially supported by Science and Technology Center in Ukraine under regular projects # 3745 and 4418.

References

- [1] Feltz A 1986 Amorphous and Vitreous Inorganic Solids (Moscow: Mir)
- [2] Zhang X, Ma H, Lucas J-L 2003 J Optoelectronics Adv. Mat. 5 327
- [3] Shpotyuk O I 2004 in: *Radiation-induced Effects in Chalcogenide Vitreous Semiconductors* (Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier Academic Press)
- [4] Balitska V, Filipecki J, Shpotyuk O, Swiatek J, Vakiv M 2001 J. Non-Cryst. Solids 287 216
- [5] Shpotyuk Ya O, Balitska V O, Shpotyuk O I, Iovu M 2009 J. Optoelectronics Adv. Mat. 11 207
- [6] Shpotyuk O, Filipecki J 2003 in: Free Volume in Vitreous Chalcogenide Ssemiconductors: Possibilities of Positron Annihilation Lifetime Study (Czestochowa: WSP)
- [7] Krause-Rehberg R, Leipner H S 1999 in: *Positron annihilation in semiconductors. Defect studies* (Berlin-Heidelberg-New York: Springer-Verlag)
- [8] Gebauer J, Rudolf F, Polity A, Krause-Rehberg R, Martin J, Becker P 1999 Appl. Phys. A 68 411
- [9] Golovchak R, Kozdras A, Shpotyuk O, Kozyukhin S, Saiter J-M 2009 J. Mater. Sci. 44 3962
- [10] Shimakawa K, Kolobov A, Elliott S R 1995 Adv. in Phys. 44 475
- [11] Popesku M A 1980 J. Non-Cryst. Solids **35-36** 549
- [12] Balitska VO, Shpotyuk OI 2000 Nucl. Instr. Meth. Phys. Res. B 166-B167 521.