This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Evaluation of the influence of velocity on dynamic passenger loads during a frontal minibus impact against an obstacle

, , and

Published under licence by IOP Publishing Ltd
, , Citation L Prochowski et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 148 012024 DOI 10.1088/1757-899X/148/1/012024

1757-899X/148/1/012024

Abstract

The safety of people travelling by minibus is a very complex issue, in which the decisive role is played by load-bearing vehicle structure, passenger seats, and personal protection means. In order to maximize the number of people transported, the seats are spaced very closely to each other and this may pose a hazard to the passengers. Based on an analysis of experimental test results, a computer model representing a system composed of a minibus floor segment, seats, and dummies was built. For the analysis, seats integrated with seat belts were adopted. A seat of this type was based on a high-rigidity frame necessary to bear, inter alia, the strong force exerted (during a collision) by passenger's torso on the shoulder seat belt and transmitted to the upper seat belt anchorage point on the seat backrest. Within this work, the frontal minibus impact against an obstacle with velocities ranging from 20 km/h to 70 km/h was considered.

The analysis covered the motion of, and dynamic loads on, a test dummy representing a 50th percentile adult male (Hybrid III dummy). Within the analysis, realizations of dynamic loads caused by inertial forces and reactions exerted by a three-point seat belt were taken into account. Special attention was paid to the extreme values of the loads that acted on dummy's head, neck, and torso when the head hit the backrest of the preceding seat in the culminating phase of the vehicle impact against an obstacle. The values of biomechanical indicators HIC, ThAC, Nij, and FAC and of the joint injury risk indicator were calculated.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/148/1/012024