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Abstract. The main goal of method validation is to demonstrate that the method is suitable for 

its intended purpose. One of the advantages of analytical method validation is translated into a 

level of confidence about the measurement results reported to satisfy a specific objective. 

Elemental composition determination by wavelength dispersive spectrometer (WDS) 

microanalysis has been used over extremely wide areas, mainly in the field of materials science, 

impurity determinations in geological, biological and food samples. However, little information 

is reported about the validation of the applied methods. Herein, results of the in-house method 

validation for elemental composition determination by WDS are shown. SRM 482, a binary alloy 

Cu-Au of different compositions, was used during the validation protocol following the 

recommendations for method validation proposed by Eurachem.  This paper can be taken as a 

reference for the evaluation of the validation parameters more frequently requested to get the 

accreditation under the requirements of the ISO/IEC 17025 standard: selectivity, limit of 

detection, linear interval, sensitivity, precision, trueness and uncertainty. A model for uncertainty 

estimation was proposed including systematic and random errors. In addition, parameters 

evaluated during the validation process were also considered as part of the uncertainty model.  
 

 

1. Introduction 

No matter what it costs, any testing and calibration laboratory need to be recognized for the quality of 

its results. The ISO/IEC 17025 [1] standard establishes the general requirements for the competence of 

testing and calibration laboratories. Laboratories accredited with ISO/IEC 17025 must comply its 

requirements grouped in two main fields: (1) Management Requirements; part 4 of the standard, and 
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(2) Technical Requirements; described in section 5 of the standard. If the laboratory is certified with 

ISO 9001 [2] standard, it is complying the section 4 of the ISO/IEC 17025. However, section 5 

demands the knowledge and experience in specialized topics, such as, fundamentals of metrology, 

method validation and estimation of uncertainty. Therefore, method validation is a fundamental topic 

at any laboratory due to the benefits obtained to demonstrate its technical competence and the validity 

of its results.  

On the other hand, wavelength-dispersive X-ray spectrometers (WDS) have been around for more 

than 60 years. In this time, they have maintained a central role in microanalysis because of their 

effectiveness in measuring X-rays reproducibly, and because of their high spectral resolution. By the 

above the WDS has been in the market for many years and it is still the preferred X-ray analytical 

system for many, mainly due to its qualifications of resolution spectral. For comparison, an energy 

dispersive spectrometer (EDS) has an energy resolution of around 130 eV (when measured as the full 

width at half maximum, FWHM, of Mn ) as-compared to a traditional wavelength-dispersive 

spectrometer (WDS), which has an energy resolution of around 16 eV, almost an order of magnitude 

improvement [3]. The WDS microanalysis advantages can be reinforced having information about 

validation of the applied method to obtain reliable results. Method validation information is crucial to 

have a good uncertainty estimation of the result of the measurement [4]. 

Because there is a lack of information about method validation with WDS microanalysis, authors 

hope to contribute with novel information. A method for the determination of chemical elemental 

composition of a binary Au-Cu alloy was studied. Evaluation of the following parameters is reported: 

selectivity, limit of detection, linear interval, sensitivity, precision, trueness and uncertainty. 

  

2. Materials and Measuring Method 

2.1. Materials 

SRM 482 NIST [5] is a set of 6 wires with different chemical elemental composition of the binary Au-

Cu alloy. There are two pure metallic wires, one of Au at 100 % and another one of 100 % Cu and 

four binary alloys Au-Cu with chemical nominal compositions as follows expressed as mass fraction 

(%):Au20-Cu80, Au40-Cu60, Au60-Cu40 and Au80-Cu20. The SRM 481 standard was arranged at 

the same capsule as a condition of practice good laboratory. The alloy Au80-Cu20 was considered as 

test sample, while the another alloys were used as standard and control sample. 

 

2.2. Equipment 

All experiments were done using an electron probe micro analyzer (EPMA) model Super-Probe JXA 

8200 JEOL equipped with 3 WDS and one EDS. WDS are from JEOL, each one containing 2 analyzer 

crystals. JXA-8200, has one EDS Si (Li), window Be Thermo Noran, 130.8 eV at 5.9 keV. Specimen 

tilt 0°, take off angle 40°, EDS elevation angle 40°, EDS azimuth angle 140°, insertion distance 87 

mm, height 11 mm. 

The microprobe is controlled with the software JXA-8200 JEOL V01.02. Record and analysis of 

the data was done with the same software. The EPMA has a UNIX operating system; therefore, it is 

not possible to obtain spectral files in emsa format. 

 

3. Results and Discussion 

3.1. Measurand definition 

The basis for quantitative X-ray microanalysis is that, to a first approximation: 

 
𝐶𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑠𝑡𝑑
∞

𝐼𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑠𝑡𝑑
≅ 𝑘 𝑣𝑎𝑙𝑢𝑒                     (1) 
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Where C is the mass (weight) concentration of an element.  I is the measured characteristic X-ray 

intensity for the element (corrected for background, peak overlap and dead time). The subscript 

“sample” denotes the concentration and intensity of the element in the sample, and “std” refers to the 

standard of known concentration, typically it is a pure element. The ratio of the characteristic 

intensities measured on the standard is known as the “k ratio” or “k value”. The proportionality sign in 

equation (1) indicates that the relationship between concentration and characteristic X-ray intensity is 

not exact. There exist “matrix effects”, arising from the nature of the electron and X-ray interactions 

with matter, which modify the measured intensities, and which depend on the unknown composition 

of the sample. A variety of approaches are used (ZAF, phi(rho)-z, empirical) to calculate correction 

factors for these matrix effects. 

3.2. Selectivity 

The selectivity of a method is usually investigated by studying its ability to measure the analyte of 

interest in samples to which specific interferences have been deliberately introduced (those thought 

likely to be present in samples) [6]. 

The selectivity of the method was evaluated through the ability of the spectrometer to change the 

analyzer crystal for the analysis of the same element due to the use of different acceleration voltages: 5 

and 25 kV, table 1. The interferences were avoided through the selection of X–ray lines to different 

level for each element. Table 1 shows the experimental conditions used for the analysis of each one of 

the elements including type of analyzer crystal, acceleration voltage and working distance. 

Measurement results of the Au80-Cu20 alloy, taken as a sample, are also included in table. The Au80-

Cu20 standard was measured at 5 and 25 kV electron beam. Under these conditions, 7 microanalyses 

with duration of 40 s each were recorded. The selectivity of the WDS microanalysis method for Au-

Cu alloy was through of the estimation of the variation coefficient or relative standard deviation 

(RSD)  0.49 to 0.7 % to Au and 0.67 to 0.76% to Cu.  Thus, we demonstrated the ability of the method 

to confirm analyte identity and its ability to measure the isolated analyte and with interferences for the 

effect of the binary alloy, taken as a sample, are also included in table 1 

Table 1. Experimental conditions and results for the evaluation of selectivity. 

Acceleration voltage Au80-Cu20 @ 5 kV, 50 A Au80-Cu20 @ 25 kV, 17 nA 

Analyzer crystal PET TAP LiF LiF 

Element-X-ray line Au-M Cu-L Au-L Cu-K 

Counts 452592.5 279216.8 215934.7 176421.2 

% RSD 0.49 0.67 0.7 0.76 

 

 

3.3. Limits of detection and quantification  

Limit of detection (LOD) was based on the analysis of blank samples following the whole 

measurement procedure. Calculation of the LOD was done through the measurement of pure metallic 

wires. Pure Cu wire was used for determining the detection limit of Au, considering this wire as a 

sample blank for Au. Whereas for determining the detection limit of Cu, pure Au wire was measured. 

Fourteen independent measurements of the sample blank were made under repeatability conditions. 

As suggested by the Eurachem method validation working group [7], the LOD was calculated 

using equation (2) through the standard deviation of the measurement of 100 % Cu standards and 100 

% Au.  

𝐿𝑂𝐷 = 3 𝑠0
´                             (2) 

where: 

𝑠0
´ =

𝑆0

√𝑛
                              (3) 

II International Congress of Mechanical Engineering and Agricultural Science (CIIMCA 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 138 (2016) 012003 doi:10.1088/1757-899X/138/1/012003

3



 
  

s0 - is the estimated standard deviation of n single results at or near zero concentration. 

s´0 - is the standard deviation used for calculating LOD. 

n – is the number of replicate observations. 

 

Table 2 shows information considered in the calculation of the method detection limit. Signal to Noise 

(S/N) ratio is also included. 

Table 2. LOD and LOQ information for Au and Cu. 

25 kV, 17 nA 

Au-L Cu-K 

Signal (S) Noise (N) Ratio S/N LOD LOQ Signal (S) Noise (N) Ratio S/N LOD LOQ 

291301.7 2963.3 98.3 0.87 0.23 740750.1 727 1018.9 1.15 0.33 

 

Limit of quantification (LOQ) is a parameter associated to the LOD. LOQ is the lowest level of 

analyte that can be determined with an acceptable level of confidence. In practice, according to the 

Eurachem working group, LOQ is calculated by most conventions to be the analyte concentration 

corresponding to the obtained standard deviation (s
´
0) at low levels multiplied by a factor, kQ. The 

IUPAC default value for kQ is 10 [8] and if the standard deviation is approximately constant at low 

concentrations this multiplier corresponds to a relative standard deviation (RSD) of 10 %. 

 

3.4. Working Range 

In order to establish the instrument working range, Au-100, Au60-Cu40, Au40-Cu60, Au20-Cu80 and 

Cu100 standards were measured 10 times on the surface of each wire. Measurements were obtained 

with an electron beam of 5 and 25 kV respectively. The average value of the measurements was used 

to build the response curve. Figure 1 show the calibration function obtained through four calibration 

points. A high correlation factor (r) above than 0.99 was obtained indicating the fitness for purpose of 

the calibration curves. Parameters of the least square linear calibration curve are summarized in figure 

1 and table 3. 

The working range was assessed with a calibration function. The calibration curve for Au has a 

slope lower than Cu for both conditions (5 and 25 kV). Thus, Cu measurements point out more 

sensitivity that the Au measurements. 

 

 

Figure 1. Performance of the calibration function. 
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Table 3. Parameters working range 

 5 kV, 17 nA 25 kV, 50 A 

 Au Cu Au Cu 

Intercept -56898 75463 -21167 45994 

Slope 6458.1 11276 3067.1 7016.8 

Correlation 

coefficient, r 
0.9937 0.9967 0.994 0.9983 

 

3.5. Sensitivity 

Analytical sensitivity is the change in instrumental response which corresponds to a change in the 

measured quantity (for example an analyte concentration), i.e. the gradient of the response curve 

[9,10]. The prefix ‘analytical’ is recommended to avoid confusion with ‘diagnostic sensitivity’ used in 

laboratory medicine [11].  

Sensitivity was estimated as the slope of the response curve in the table 4, shown the results for each 

element in term of the counts and K value. 

Table 4. Sensitivity values for counts and k value 

Slope Au (counts) K value Au Cu (counts) K value Cu 

5 kV 6422.31 0.0104 11469.5 0.0095 

25 kV 3025.76 0.0106 7041.46 0.0097 

 

3.6. Precision  

Approaches to simultaneous determination of repeatability and intermediate precision are described in 

ISO 5725-3 [12]. In addition, a design based on the harmonized guidelines for single-laboratory 

validation of methods of analysis [13] offers the possibility to determine repeatability and intermediate 

precision from a single study. Subsamples of the selected test material are analyzed in replicate under 

repeatability conditions across a number of different runs, with maximum variation in conditions 

between the runs (different days, different analysts, different equipment, etc.). Via one-way ANOVA 

[14,15], repeatability can be calculated as the within-group precision, while the intermediate precision 

is obtained as the square root of the sum of squares of the within group and between-group precision. 

This type of design can provide an efficient way of obtaining sufficient degrees of freedom for 

estimates of repeatability and between-group precision. The precision was quantified through of 

assessment of the repeatability and reproducibility.  

3.6.1. Repeatability Test 

The repeatability was based on 8 measurements obtained under repeatability conditions. Repeatability 

conditions were alloy Au80-Cu20 as test sample, electron beam of 25 KV, beam current 17 nA, 

distance working 11 mm, the same spot size and assumptions of the high homogeneity of the sample, 

thus, the analysis was done in different points of the surface of the alloy. Table 5 shows the 

measurement results under repeatability conditions. The variation coefficient was the parameter use 

for assessment the measurement repeatability. 

Table 5. Repeatability results as variation coefficient 

 
25  KV 5 KV 25kV 5 kv 

 
Cu Cu Au Au 

 
20.65 19.53 79.35 80.47 

 
20.55 19.13 79.46 80.87 

 
20.71 18.87 79.29 81.13 
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20.55 18.72 79.47 81.28 

 
20.52 18.61 79.48 81.39 

 
20.57 18.50 79.43 81.50 

 
20.60 18.90 79.40 81.10 

Averange 20.6 18.9 79.4 81.1 

Std Desv. 0.06 0.32 0.06 0.32 

Var. Coef. 0.29 1.70 0.078 0.39 

 

3.6.2. Reproducibility Test  

The reproducibility assessment was done with an electron beam of 5kV and 25 kV as a reproducibility 

condition, thus, a change in the beam current was used, analyzer crystal and X-ray line. The test 

sample was Au80-Cu20 and variance analysis (F test) was applied for reproducibility evaluation. 

Measurements were performed applying the two different electron beam voltage and the k value data 

were used in the F test. F test results are shown in the table 6 for each element. 

Table 6. Data and F test results as reproducibility 

Cu L and K Au M and L 

5kV 25 kv 5 kv 25 kv 

k values k values k values k values 

19.53 20.65 80.47 79.35 

19.13 20.55 80.87 79.46 

18.87 20.71 81.13 79.29 

18.72 20.55 81.28 79.47 

18.61 20.52 81.39 79.48 

18.50 20.57 81.50 79.43 

19.53 20.65 80.47 79.35 

 

 

F test parameters Cu L and K Au M and L 

Electron beam Cu 25 kV Cu 5 kV Au 25 kV Au 5 kV 

Average 20.5906667 18.893 79.41266667 81.107 

Variance 0.00501467 0.1457628 0.005374667 0.1457628 

Data 6 6 6 6 

Degrees of freedom 5 5 5 5 

F 0.034 
 

0.037 
 

P(F<=f) one-way 0.001 
 

0.0012 
 

Value F critical (one-way) 0.198 
 

0.198 
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3.7. Trueness 

The bias criterion states that if v (absolute difference) > C (uncertainty associated absolute 

difference), then the difference is greater than can be explained as an instrument correction with a 

calibration standard. However, if the situation is opposite, spectrometer is accurate and any correction 

is not required. Equation (4), indicates how to estimate, andC equation (5) for v calculated.  

The evaluation of the trueness was realized as a bias (v). The bias calculated following the 

equation (5). 

∆𝑐= (𝑡𝑛−10,95) (
𝑠

√𝑛
) + 𝑈               (4) 

∆𝑣 = |�̅� − 𝜇|               (5) 

Where: is the certified value for each element of the sample alloy; �̅� is mean of the measurements, s 

is standard deviation, n is the number of measurement and u is uncertainty standard. 

Equations (4) and (5) were considered to obtain the results included in table 7. According to the 

results, significant bias was not obtained. 

 

Table 7. Criteria bias results 

 
v c 

 
Au Cu Au Cu 

25 kV 0.25 0.15 0.74 0.76 

5 kV 0.29 0.19 0.96 0.94 

 Of agree with table 7 it not bias was observed, so, the spectrometer fits accuracy.  

3.8 Uncertainty 

Uncertainty is an interval associated with a measurement result, which expresses the range of values 

that can reasonably be attributed to the quantity being measured. An uncertainty estimate should take 

account of all recognized effects operating on the result. The uncertainties associated with each effect 

are combined according to well-established procedures. Several approaches to obtaining an 

uncertainty estimate for the results from chemical measurements are described [16, 17, 18, 19, 20]. 

The uncertainty model approved is the figure 2. The model included source of variation systematic as 

uncertainty of the standard and the correction for matrix effect with use the software and random 

sources as repeatability and intermedia precision at figure 3. 

 

 

Figure 2. Uncertainty diagram proposed for the determination of element composition of the alloy. 

II International Congress of Mechanical Engineering and Agricultural Science (CIIMCA 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 138 (2016) 012003 doi:10.1088/1757-899X/138/1/012003

7



 
  

 

Figure 3. Diagram of the uncertainty budget. 

The values for each element composition and their expanded uncertainty are reported in Table 8. 

Table 8. Values of the uncertainty expanded for each component 

kV 25  KV 5 KV 25kV 5 kv 

Element Cu (kg/kg) Cu (kg/kg) Au (kg/kg) Au (kg/kg) 

Value 20.59 18.89 79.41 81.11 

Uncertainty expanded 0.39 0.91 0.66 1.07 

 

4. Conclusions 

The use of microprobe (EPMA) or electron scanning microscope coupled with WDS has been 

extended in testing laboratories. Method validation and uncertainty estimation are the main technical 

requirements to achieve accreditation. This paper shows a way to achieve this goal and it can be 

considered as a guide for laboratories involved in the accreditation process. 

Method validation was performed to determinate the chemical composition by elemental 

wavelength dispersive spectrometry (WDS). The validation of the method includes uncertainty 

estimation using a simple model considering and estimation of precision components (repeatability 

and intermediate precision as source of random variation. The model also includes systematic sources 

of variation such as the uncertainty due to the software used for matrix effect correction and 

uncertainty of the standard.  
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