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Abstract. Two dynamic models of robots with elastic hinges are considered. Dynamic models 

are the implementation of the method based on the Lagrange equation using the transformation 

matrices of elastic coordinates. Dynamic models make it possible to determine the elastic 

deviations from programmed motion trajectories caused by elastic deformations in hinges, 

which are taken into account in directions of change of the corresponding generalized 

coordinates. One model is the exact implementation of the Lagrange method and makes it 

possible to determine the total elastic deviation of the robot from the programmed motion 

trajectory. Another dynamic model is approximated and makes it possible to determine small 

elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by 

two models are compared to the example of a two-link manipulator system. The considered 

models can be used when performing investigations of the mathematical accuracy of the 

robots. 

1.  Introduction 

Let us consider that in robots the elastic elements are conventionally accumulated in the joint nodes of 

links – hinges. The hinge rigidity can be determined from rigidities of actual elastic elements of the 

drive established in this hinge by means of its reduction to one of the methods known in the applied 

theory of elastic vibrations. 

Elastic elements are deformed under the effect of static and dynamic loads, which results in an 

actual motion law that will differ from the programmed one. We denote the magnitude of the deviation 

of the vector of generalized coordinates from the programmed motion as {Δq} = {Δq(t)}. 

The equation of motion of the manipulator systems of robots allowing for the elastic compliance, 

which is taken into account in varying the direction of the generalized coordinate corresponding to this 

hinge, can be derived from [1] by the force of substitution of vector {q(t)} by vector {q(t) + Δq(t)}. 
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In this expression QDi is the generalized force, which corresponds to the forces developed by an          

i-drive; QGi and QFi are the generalized forces, which correspond to the force of gravity and external 

forces. 

Equation (1) should be supplemented by the equation associating the forces developed by drives 

QDi with elasticity forces, which appear in transmission mechanisms of these drives. If the mass of 

elastic elements can be neglected and the elastic force linearly depends on Δq, then we have the 

expression 
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where wi is a stiffness coefficient of an i-hinge. 

Equation (2) adds Equation (1) to the set of equations resolvable relatively all generalized 

coordinates {q} and {Δq}. Equations (1) and (2) jointly constitute the mathematical model for 

modeling the dynamics of manipulator systems of robots with elastic hinges by the composite 

variables, which are the sum of rigid {q} and elastic {Δq} generalized coordinates. 

If rigidities of elastic hinges are sufficiently large, then elastic deformations that appear in them and 

determine elastic coordinates {Δq} can be considered as small quantities. In this case, when 

calculating each composite variable, we are forced to sum the quantities of different orders of 

magnitude in Equation (1). We can consider that another disadvantage of Equation (1) is the fact that 

this equation contains slow and rapid variables. The variables, which determine the programmed 

motion of the manipulator system, belong to a slow group of variables; while the variables, which 

reflect small elastic vibrations, can be referred to a rapid group. This leads to the fact that when 

numerically integrating differential Equation (1), we are forced to calculate high-frequency 

components at long time intervals with a small step.  

2.  Creating a dynamic model 

Based on the assumption of smallness of elastic deformations, we can derive the mathematical model 

without mentioned disadvantages of the mathematical model. For this purpose, let us expand matrices 

[Mi] and [Ci] in the vicinity of the programmed motion into the Taylor series at Δq → 0 retaining the 

summands of this series to the first infinitesimal order inclusively:  
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Matrices [Mi] and [Ci] are determined by the inertial parameters of the manipulator system; therefore, 

we can consider that they vary weakly with small variations in the vector of generalized coordinates 

{q}. Consequently, we can neglect the partial derivatives standing under the summation sign in the 

obtained expansions and retain only zero approximations of the starting matrices, i.e., we can accept 

[Mi(q+∆q)]= [Mi(q)] + O(∆q), 

[Ci(q+∆q)] = [Ci(q)] + O(∆q). 

 

By similar reasoning, we can assume that when ∆q→0, 

 

QGi(q+∆q)=QGi(q) + O(∆q) and QFi(q+∆q)=QFi(q) + O(∆q). 

 

Let us transform Equation (1) rejecting the second infinitesimal order summands and derive 

 

              qCqqqMqqСqqqM i

T

ii

T

i
 ΔΔ 2)()(}{)( )()()( qQqQqQ FiGiDi  .         (3) 

 

Total elastic deformation {Δq}, which appears in hinges, can be represented as the following sum: 

 

                            ∆qi=∆qi
ks

 +∆qi
d
, i=(1,…,n),                                                    (4) 

where ∆qi
ks

 is the quasi-static elastic deformation and ∆qi
d
 is the deformation corresponding to elastic 

vibrations in an i-hinge. 

Using (4), we can decompose Equation (3) into three equations separating slow ∆q
ks

 and rapid ∆q
d
 

variables: 
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where ri is a damping coefficient, which reflects the energy dissipation in an i-hinge. 

The set of three Equations (5) is a mathematical model of the manipulator system with elastic 

hinges at small deformations. The first equation of the system is the equation of motion of a rigid 

manipulator system. The second equation is the equation of small elastic vibrations {∆q
d
}, which 

appear in the hinges of manipulator systems. The right side of this equation reflects elastic and 

dissipative properties of hinges. The third equation, according to (2), associates the quasi-statically 

small elastic deformations {∆q
ks

} with forces developed by drives. 

3.  Test simulation  

Let us compare the results of numerical modeling of the dynamics of manipulator systems with elastic 

hinges obtained using mathematical models (1), (2), and (5). We will perform modeling by the 

example of the three-link manipulator system (Figure 1).  

 
 

Figure 1. The three-link manipulator system. 

 

The first link of the manipulator system under study is modeled by a thin-wall pipe with length l1, 

radius R1, and mass m1, which is rotated around the vertical axis coinciding with the central 

longitudinal axis of the pipe. The second link is pivotally connected with the first one and is modeled 

by a thin rod with length 2l2 and mass m2, which is rotated relative to the first link in the vertical plane. 

The third link moves steadily relative to the second link and has length l3 and mass m3 concentrated at 

the link end. 

Let us investigate the deviations of motion manipulator system considering the straight-linear 

uniformly accelerated motion of the point associated with concentrated mass m3 of the third link. Let 

us accept the point with Cartesian coordinates (x(0), y(0), z(0)) = (0.6, 0.0, 0.0) as the initial point of 

the motion trajectory, and the point with coordinates (x(T), y(T), z(T)) = (0.0, 0.6, 1.2), where T = 2 s is 

the motion time, as the end point. Solving the inverse kinematic problem, let us find the law of motion 

manipulator system under study along the specified trajectory (Figure 2). 
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Figure 2. The law of motion manipulator system. 

 

Let us determine the numerical values of geometric, inertial, and elastic parameters of the 

manipulation system under study as well as the initial values for integration variables. We accept R1 

=0.1 m, l1 =0.6 m, l2 =0.3 m, l3 =0.3 m, m1=20 kg, m2 =10 kg, m3 =10 kg, w1 =1.0e4 Nm, w2 =1.0e4 

Nm, w3 = 1.0e5 Nm, ∆q
d
i(0) =0.0 (i =1–3), dq1

Δ (0) =
1q  (0.01) = 0.0075 s

–1
, dq2

Δ (0) = 
2q (0.01) = 

0.0038 s
–1

, dq3
Δ (0) = 

3q (0.01) = 0.0095 ms
–1

, Δq1(0) = ksq1Δ (0.01) = –2.201e–4 m, Δq2(0) = 

ksq2Δ (0.01) = 0.0082 m, Δq3(0) = 
ksq3Δ (0.01) = 7.573e–4 m, and 

iqΔ (0) = d

iqΔ (0) (i = 1–3). 

Differential equations were integrated by the fourth-order Runge–Kutta method. The results of 

calculations are presented in Figures 3–5. Plot 1 corresponds to the dependence, which reflects the 

sum of the quasi-static and vibrational components of small elastic deviations 
ks

iqΔ (t)+ dq1Δ (t)   

(i = 1–3). Plot 2 represents dependence 
ks

iqΔ (t) (i = 1–3). Dependencies presented in plots 1 and 2 are 

calculated on the basis of the set of equations (5). Plot 3 corresponds to dependence Δqi (t) (i = 1–3) 

calculated on the basis of the set of Equations (1 and 2). Plots 1 and 3 are compared. It should be noted 

that as the rigidity of hinges wi (i = 1–3) increases, the difference between the results of modeling 

found by two compared mathematical models decreases. 

 

Figure 3. Plot 1. Quasi-static and vibrational components of coordinates q1. 
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Figure 4. Plot 2. Quasi-static and vibrational components of coordinates q2. 

 

  

Figure 5. Plot 3. Quasi-static and vibrational components of coordinates q2. 

 

A detail derivation of the set of equations similar to (5) is presented in [1]. 

The distinctive feature of the mathematical model of manipulation systems of robots, which is 

based on the set of Equations (5), is the fact that this mathematical model can be simultaneously used 

for the synthesis of programmed motions of rigid manipulation systems and for the analysis of 

deviations from these motions, which appear in actual manipulation systems because of the elastic 

compliance in hinges. 
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