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Abstract. This paper deals with the numerical analysis of saturated porous media, taking into 
account the degradation process of the solid skeleton. An implicit boundary element method 
(BEM) formulation, based on time-independent fundamental solutions, is developed and 
implemented to couple the fluid flow and the two-dimensional elastostatics problems. The 
Biot's poro-elastic theory is used and the elastic behavior of the skeleton is coupled to damage.
A scalar damage model is assumed for this analysis. The non-linear problem is solved by a 
Newton-Raphson procedure. A numerical example is presented, in order to validate the 
implemented formulation and to illustrate its efficiency regarding the accuracy of the results 
and the robustness of the numerical algorithm.

1.  Introduction
The study of porous materials is extremely relevant in several areas of knowledge, such as soil and 
rock mechanics, contaminant diffusion, biomechanics and petroleum engineering. The mechanics of 
porous media deals with materials where the mechanical behavior is significantly influenced by the 
presence of fluid phases. The response of the material is indeed highly dependent on the fluids that 
flow through the pores. Biot [1] was the first to propose a coupled theory for three-dimensional 
consolidation, based on the Terzaghi’s studies on soil settlement [2]. This thermodynamically 
consistent theory is described in the book by Coussy [3], who improved significantly the knowledge 
on poromechanics. Cleary [4] presented fundamental solutions to porous solids, representing first 
contributions on integral equations dedicated to this kind of problems. Among others pioneers BEM 
works applied to porous media, we can quote Cheng and his collaborators [5-7].

In the field of material mechanics, we note the modelling of nonlinear physical processes, as 
damage and fracture. Processes of energy dissipation and consequent softening have been extensively 
studied, so that one can count on a wide range of models already developed. Continuum Damage 
Mechanics (CDM) deals with the load carrying capacity of solids whose material is damaged due to 
the presence of micro-cracks and micro-voids. CDM was originally conceived by Kachanov [8], to 
analyze uniaxial creeping of metals subjected to high-order temperatures. Several authors studied and 
developed models related to CDM. Lemaitre and colleagues [9-10] contributed significantly to the 
field. In this work, we use the model of Marigo [11], who presented a scalar isotropic model for brittle 
and quasi-brittle materials. The first applications of BEM to damage mechanics reported in the 
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literature are Herding & Kuhn [12] and Garcia et al [13]. Recently, we can cite the works of Sladek et 
al. [14], Botta et al. [15] and Benallal et al. [16]. These works include non-local formulations to treat 
strain localization phenomena and associated numerical problems.

Due to the increasing complexity of models developed for engineering problems, robust numerical
models capable to provide accurate results with the least possible computational effort are looked for.
BEM appears as an interesting choice for obtaining numerical solutions in several applications.

In this paper, a non-linear set of transient BEM equations is developed, based on Betti’s reciprocity 
theorem, to deals with isotropic-damaged porous media. The description of porous solid is done in a 
Lagrangean approach. Marigo’s damage model is applied with a local evaluation of the 
thermodynamic force associated to damage.

Regarding the BEM numerical procedure, the integration over boundary elements is evaluated by 
using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is 
followed to carry out the relevant domain integrals. A Newton-Raphson procedure is applied to solve 
the non-linear system, with a consistent tangent operator. This is done in the light of the procedure 
introduced by Simo and Taylor [17] for finite elements.

2.  Governing Equations
The following free energy potential is considered

2d 2
kj 0 kj kjlm lm kj

2
0 0 kj

1 1(
2 2

1 Tr
2

b M

M bM
(1)

where the constants M and b represent the Biot modulus and Biot coefficient of effective stress, 
respectively. In the case of saturated media, filled by an incompressible fluid, the Biot coefficient 
assumes unit value. In full-saturated conditions, the lagrangian porosity measures the variation of 

fluid content per unit volume of porous material. The bulk density is described by . d
jklmE represents 

the isotropic drained elastic tensor. jk denotes the strains in the solid skeleton. Assuming isotropy,
the damage is represented by the scalar-valued internal variable D , which defines the internal state of 
the material, taking values between zero (sound material) and one (complete degradation). The initial 
porosity field is indicated by .

The derivatives of free energy potential with respect to the variables lead to the associate variables, 
that are the total stress jk , the pore-pressure p and the thermodynamical force Y conjugated to D

d
jk jklm lm jk 0 jk

jk
(1 D)E bM b (2)

0 0 jk
0

p p TrM b (3)

d
jk jklm lm

1
D 2

Y (4)

Using equations (2) and (3) the total stress tensor is written as

jk jklm lm jklm lm 0 jkE DE p pb (5)

which it is seen that it includes three different contributions.
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In addition to the state laws given above, it is necessary to define a damage criterion. In Marigo's 
model it takes the form:

( ,D) (D)F Y Y (6)

The term (D) represents the maximum value of Y reached during the loading history, and is 
adopted here in its simple linear form 0(D) DY A , where parameters 0Y and A are material 

dependent. The damage evolution derives from the consistence condition ( ,D) 0F Y , resulting:

D Y
A

(7)

The fluid flow through the porous space can be described by Darcy's law. Assuming a laminar
flow, this law considers a linear relationship between the flow rate and the pressure gradient:

k ,k kk p f (8)

In this simple version, it is assumed isotropic, with k k
the scalar permeability coefficient, defined 

as a function of the intrinsic permeability k and the fluid viscosity . The fluid body force is 
represented by kf .
The fluid mass balance equation, assuming no external fluid sources, is written as:

f
f k ,k

d
0

dt
(9)

The following equilibrium and compatibility relations added to appropriate boundary conditions 
complete the set of equations that describes the poro-elasto-damage problem, in quasi-static 
conditions:

jk,k jb 0 (10)

jk k, j j,k
1 u u
2

(11)

3.  Integral Equations
In order to couple the behavior of the solid and fluid phases, two sets of integral equations are derived. 
The first one is related to the elastostatics problem, for which a pore-pressure field is distributed over 
the domain, while the other equation refers to the pore-pressure itself.

In order to obtain the integral equations one can use Betti’s reciprocity theorem, which can only be 
applied to elastic fields. Thus, in the case of elasticity, assuming the effective stress definition:

ef * *
jk ijk jk ijk(q) (s,q)d (q) (s,q)d (12)

d * *
jk jk jk ijk jk ijk(q) (q) p(q) (s,q)d (q) (s,q)db (13)
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where s and q represent the source and field points, and *X is the fundamental solution for the 
variable X , from now on. The direction i refers to the application of the unit load on the source point
into the fundamental domain. In elastostatics, one applies the well-known Kelvin fundamental 
solutions. By applying the divergence theorem to equation (13), and considering the transient nature of 
the problem, one obtains the following integral equation for displacements on the boundary points S

* *
ik k k ik ik k

* d *
jk ijk jk ijk

C u (S) T (Q)u (S,Q)d T (S,Q)u (Q)d

p(q) (S,q)d (q) (S,q)db
(14)

The stresses at internal points are obtained by differentiating equation (14), now written for internal 
points, and applying Hooke's law, which leads to

d
ij ijk k ijk k ijkl kl

d
ij kl kl ijkl ij kl

(s) S (s,Q)u (Q)d D (s,Q)T (Q)d R (s,q) (q)d

TL (s) R (s,q)p(q)d TL p(s)b b
(15)

where ijkS , ijkD and ijklR are the derivatives of the fundamental solutions, and ijTL are the free-
terms coming from differentiation.

The integral equation for the pore-pressure can be obtained in a similar way, defining the 
proportional flow vector pr

k k k ,kk kpf in order to apply Betti's Theorem

* *
k k ,k k ,kk p (s,q)d (s,q)p (q)df (16)

The divergence theorem leads to:

* * * *
k,k ,k kp(s) (s,Q)p(Q)d p (s,Q) (Q)d p (s,q) (q)d p (s,q)k (q)df (17)

indicates the outward normal direction to the boundary. Assuming k,k (see (9)) and, 

neglecting the body force kf , we get:

* * *p(s) (s,Q)p(Q)d p (s,Q) (Q)d p (s,q) (q)d (18)

For convenience, it is possible to take the derivative (q) from (3), so that the pore-pressure is given 
by the following equation:

* * * 1p(s) (s,Q)p(Q)d p (s,Q) (Q)d p (s,q) p(q) Tr (q) db
M

(19)

Considering a finite time step n n+1 nt = t t and a corresponding variable increment

n+1 nX = X X , one can integrate equations (14), (15) and (19) along the interval t , leading to the 
following set of equations, in terms of the variable increments:
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* * *
ik k k ik ik k jk ijk

d *
jk ijk

C u (S) T (Q)u (S,Q)d T (S,Q) u (Q)d p(q) (S,q)d

(q) (S,q)d

b

(20)

d
ij ijk k ijk k ijkl kl

d
ij kl kl ijkl ij kl

(s) S (s,Q) u (Q)d D (s,Q) T (Q)d R (s,q) (q)d

TL (s) R (s,q) p(q)d TL p(s)b b
(21)

* *

* *

c(s)p(s) (s,Q)p(Q)d p (s,Q) (Q)d

1 1 1p (s,q) p(q)d p (s,q)Tr (q) d
t t

b
M

(22)

4.  Algebraic Equations and Solution Procedure
The numerical solution of the boundary value problem requires both the time and space 
discretizations. It should represent the system of equations in a discrete way along the linear boundary
elements and into the triangular domain cells in order to obtain the approximate values of the variables 
of interest. One defines the number of boundary points by nN and the number of internal nodes by iN .
The appropriate discretization of the integrals on (20)-(22), followed by some algebraic manipulations 
inherent to BEM, lead to the following system:

dH u G T Q Q IK pb (23)
dHL u GL T QL QL IK pb (24)

(i) (i) (i) (i) (i) (i)
1p HP p GP V QP p QP Tr

t t
b

M
(25)

The subscript (i) refers to internal points. The influence matrices represented by come from the 

integration of the fundamental solutions and its derivatives. The variables represented by are 
prescribed or unknown variables along the boundary or over the domain. After some arrangements, the 
system given above can be written as

d
(i)E Ns QS I QS I IK pb (26)

(i) (i)(i)
1I QP p Np QP Tr

t t
b

M
(27)

where Ns and Np are vectors containing prescribed values and E the drained elastic tensor. 

Finally, arranging the two equations in a single one, in terms of only, leads to

dE Ns Np QS (28)

with the new terms

WCCM/APCOM 2010 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 10 (2010) 012049 doi:10.1088/1757-899X/10/1/012049

5



1

(i)
1Np QS IK I QP Np

t
b

M
(29)

1

(i) (i)
1E E QS IK I QP QP Tr

t t

2b
M

(30)

Due to the presence of correction terms associated with damage, equation (28) is non-linear at each 
time increment, and can be written:

d
n n nY E Ns Np QS 0 (31)

The solution is carried out by a Newton-Raphson’s scheme. An iterative process is required to reach 
equilibrium. Then, from iteration i , the next try i 1 is given by i 1 i i

n n n . The 

correction i
n is calculated from the first term of the Taylor expansion, as follows:

i
ni i

n ni
n

Y
Y 0 (32)

where the derivative 
i
n

i
n

Y
is the consistent tangent operator.

5.  Numerical Example
To illustrate the BEM formulation applied to the poroelastic media we first analyze the classical 
Terzaghi’s consolidation problem. It consists on a soil layer of thickness equal to 10m, resting on a 
rigid impermeable base. A constant unit load is applied on the top surface of the layer at t 0 , under 
drained conditions, during 100s. The material parameters, assuming the layer made of Berea 
Sandstone, are defined as follows (Detournay & Cheng [18]):
E 14400 MPa, 0.2 , 0.79b , 12250M Mpa.

draining surface

Figure 1. Problem definition, internal cells mesh adopted and material parameters
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Figure 2. Pore-pressure and effective stress evolution at 0.1s, 1s, 5s, 10s, 20s, 50s, 100s

From figure 2 one can observe the short-time response at 0.1s, when the fluid phase is more 
required, inducing the higher values of pore-pressure. With time, the drainage process leads to an 
increase in effective stress field, accompanied by a proportional pore-pressure decrease, until 
vanishing at 100s. Figure 3 presents the effective stress and pore-pressure evolutions at the bottom of 
the layer, which is compared to the analytical solution given in Detournay & Cheng [18].

   

Figure 3. At the bottom of the layer: a) Pore-pressure validation b) Pore-pressure and effective stress

5.1.  Uniform time-distributed loading (1000 s)
In this section, a different loading process is used. The unit load is progressively applied over 1000s. 
In this way, it can count on the fluid rigidity along all the process, since the low value of the loading at 
each time step is not sufficient to cause the complete drainage. The results are compared for the 
poroelastic and elasto-damage behaviors, besides the coupled response. For the damage model, we
adopt the parameters 0 1e 7Y and 2e 5A . The analysis involving damage are presented up to 
the maximum load, thus the softening branch is not represented here.

The strain behaves in a similar way for the poroelastic and the elastic materials, increasing almost 
linearly up to the total time (figure 4). The difference between the two curves results from the fluid 
phase flow. Taking into account the damage, the contribution of the fluid is also significant. The 
damage process is reduced by this flow (figure 5b).
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Figure 4. Strain evolution for all the considered behaviors

In figure 5a, it can be observed that the elasto-damaged material has an intermediary behavior
between the porous media and the damaged porous media. In addition, it reaches the maximum load 
before the poro-elasto-damaged material, with a higher deterioration level (figure 5b).

It is interesting to note the augmentation of the pore-pressure in the presence of the damage, 
beyond the threshold defined on the simple poroelastic case.

        

Figure 5. a) Effective stress field evolution b) Damage parameter evolution

On the numerical stability, the presented model shown to be almost independent of the time step 
adopted, having been tested values from 0,001 up to 10s, without any observable changes on the
response.

It should be noted that, in the presence of damage, the response is represented only up to around 
300s, which corresponds to the limit load as we have a load control. Besides, strain softening in the 
constitutive law causes localization phenomena, which leads to physically meaningless results and
imposes difficulties on the numerical solution, requiring the use of regularization techniques.
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Figure 6. Pore-pressure evolution

6.  Conclusions and Perspectives
A BEM formulation to poro-elasto-damaged material was presented. The model has shown a 
reasonable level of coupling between the damage and the fluid seepage. The literature, on theoretical 
and experimental levels, poses several interesting questions, among which the variations that the 
damage state imposes on the poroelastic parameters. Some developments in this way are being made
in the presented model, in order to improve the solid-fluid interaction.
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