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Abstract. In this paper we consider the problem of inverting an nn  RSFMLR circulant 

matrix with entries over mZ . We present two different algorithms. Our algorithms require 

different degrees of knowledge of m  and n , and their costs range, from nnn logloglog  to 

mnnn loglogloglog2
 operations over mZ . Moreover, for each algorithm we give the cost in 

terms of bit operations. Finally, the extended algorithms is used to solve the problem of 

inverting RSFMLR circulant matrices over mZ . 

1 Introduction 

Circulant matrices have important applications in various disciplines including, image processing, 

communications, signal processing, encoding, computer vision and they have been put on firm basis 

with the work of P. Davis [1] and Z. L. Jiang [2]. 

The circulant matrices, long a fruitful subject of research [1,2], have in recent years been extended 

in many directions [3,4, 6–8,11]. The )(xf -circulant matrices are another natural extension of this 

well-studied class, and can be found in [9–14]. The )(xf -circulant matrix has a wide application, 

especially on the generalized cyclic codes [9], where is a monic polynomial with no repeated roots in 

its splitting field over a field. The properties and structures of the 1 xxn
-circulant matrices, which 

are called RSFMLR circulant matrices, are better than those of the general )(xf -circulant matrices, 

so there are good algorithms for finding the inverse of the RSFMLR circulant matrices. In this paper 

we consider the problem of inverting RSFMLR circulant with entries over the ring mZ . 

In this paper we describe two algorithms for inverting an nn  RSFMLR circulant matrix over 

mZ  which transform the original problem into an equivalent problem over the ring ][xZm . Our first 

algorithm assumes the factorization of m  is known and requires mnnn loglog2   multiplications 

and mnn loglog2
 additions over mZ . This corresponds to the bit complexity bound 

,loglogloglog)(log)loglog( 22 mnnnmmnnnO   where )(d ) denotes the bit complexity of 

multiplying d -bit integers. Our second algorithm does not require the factorization of m and its cost is 

greater, by a factor mlog ; than in the previous case. 

 

Definition 1 A row skew first-minus-last right(RSFMLR) circulant matrix with the first 

row )( 1,,1,0 naaa   over mZ , denoted by RSFMLRcircfr )( 1,,1,0 naaa  , is meant a square matrix of the 

form: 

http://creativecommons.org/licenses/by/3.0
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                             (1) 

It can be seen that the matrix over mZ  with an arbitrary first row and the following rule for 

obtaining any other row from the previous one: Get the 1i st row by minus the last element of 

the i th row to the first element of the i th row,and 1  times the last element of the i th row, and then 

shifting the elements of the i th row (cyclically) one position to the right.  

Obviously, the RSFMLR circulant matrix over mZ  is a 1 xxn
-circulant matrix [9], and that is 

neither the extension of circulant matrix over mZ  [3] nor its special case and they are two different 

families of patterned matrices. 

We define )1,1(   as the basic RSFMLR circulant matrix over mZ , that is 

 

  . ,0)fr(0,1,0,RSFMLRcirc)1,1  （                                      (2) 

 

It is easily verified that   1 xxxg n
has no repeated roots over mZ  and   1 xxxg n

 is 

both the minimal polynomial and the characteristic polynomial of the matrix )1,1(  . In addition, 

)1,1(   is nonderogatory and satisfies   )1,1(
j

 RSFMLRcircfr )0,,0,1,0,,0(

1


 jnj

  and 

)1,1()1,1(
n

  nI .  In view of the structure of the powers of the basic RSFMLR circulant 

matrix )1,1(   over mZ , it is clear that 

i
n

i

in aaaafrRSFMLRcircA )1,1(

1

0

110 ),,,( 





                                    (3) 

Thus, A  is a RSFMLR circulant matrix over mZ  if and only if  )( )1,1(  fA  for some 

polynomial )(xf over mZ . The polynomial    





1

0
)(

n

i

i

i xaxf  will be called the representer of the 

RSFMLR circulant matrix A  over mZ . By Definition 1 and Equation (3), it is clear that A  is a 

RSFMLR circulant matrix over mZ  if and only if A  commutes with )1,1(  , that is, 

AA )1,1()1,1(   . In addition to the algebraic properties that can be easily derived from the 

representation (3), we mention that RSFMLR circulant matrices have very nice structure. The product 

of two RSFMLR circulant matrices is a RSFMLR circulant matrix and
1A  is a RSFMLR circulant 

matrix, too. Further more, let }][)(),({][ )1,1()1,1( xZxffAAZ mm  
 

It is a routine to prove that ][ )1,1( mZ is a commutative ring with the matrix addition and multiplication. 

 

Definition 2 A row skew last-minus-first left (RSLMFL) circulant matrix with the first 

row ),,,( 110 naaa   over mZ , denoted by RSLMFLcircfr ),,,( 110 naaa  ,  is meant a square matrix 

of the form: 

 



3

1234567890

MSETEE 2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 81 (2017) 012200    doi   :10.1088/1755-1315/81/1/012200

 

nnnnnn

nnn

n

nn

aaaaaaa

aaaa

aa

aaaaa

aaaa







































2231001

3012

10

00121

1210











                                   (4) 

Lemma 1 Let  
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I  be the nn  matrix of the counter identity. 

Then 

(i) RSLMFLcircfr
),,,( 110 naaa 

 

= RSFMLRcircfr nn Iaaa ˆ),,,( 011  ; 

(ii) RSLMFLcircfr nn Iaaa ˆ),,,( 110   

=RSFMLRcircfr ).,,,( 011 aaan   

Assuming A  is inveible over mZ , we consider the problem of computing a RSFMLR circulant 

matrix )1,1(

1

0





 in

i ibB , such that IAB  . 

It is natural to representer with a RSFMLR circulant matrix 


 
1

0 )1,1(

n

i

i

iaA  the polynomial 

(over the ring ][xZm )， 





1

0
)(

n

i

i

i xaxf . Computing the inverse of A  is clearly equivalent to 

finding a polynomial 





1

0
)(

n

i

i

i xbxg   in ][xZm  such that 

 

      ).1(mod1)()(  xxxgxf n
                                               (5) 

 

The congruence modulo 1 xxn
 follows from the equality  n

n I  )1,1()1,1( . Hence, the 

problem of inverting a RSFMLR circulant matrix is equivalent to inversion in the ring 

 1/][ xxxZ n

m . 

The following theorem states a necessary and sufficient condition for the invertibility of a 

RSFMLR circulant matrix over mZ . 

 

Theorem 1  Let hk

h

kk
pppm 21

21 denote the prime powers factorization of m and let )(xf  denote 

the polynomial over mZ  representer to a RSFMLR circulant matrix A . The matrix A  is invertible if 

and only if, for hi ,,1 , we have 1)1),(gcd(  xxxf n
 in ][xZ

ip . 

Proof  If A  is invertible, by (5) we have that there exists )(xt  such that for 

hi ,,1 1)1)(()()(  xxxtxgxf n
 in ][xZ

ip . 

Hence, 1)1),(gcd(  xxxf n
 in ][xZ

ip  as claimed. The proof that the above condition is 

sufficient for invertibility is constructive and will be given in Section 2 (Lemmas 2 and 3). 
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Review of bit complexity results [3]. In the following we will give the cost of each algorithm in 

terms of number of bit operations. In our analysis we use the following well-known results (see for 

example [15] or [16]). Additions and subtractions in mZ take mO log  bit operations. We denote by 

)logloglog(( dddOd   the number of bit operations required by the Schönhage-Strassen  

algorithm [18] for multiplication of integers modulo 12 d
. Hence, multiplication   between elements 

of mZ takes )loglogloglog(loglog mmmOm   bit operations. Computing the inverse of an 

element mZx  takes mm loglog)(log  bit operations using a modified extended Euclidean 

algorithm (see [15], Theorem 8.20). The same algorithm returns ),gcd( mx  when x is not invertible. 

The sum of two polynomials ][xZm in ).1(mod1)()(  xxxgxf n  of degree at most n  can be 

trivially computed in )log( mnO  bit operations. The product of two such polynomials can be 

computed in )log( nnO  multiplications and )logloglog( nnnO  additions/ subtractions in mZ  (see 

[16], Theorem 1.7.1). Therefore, the asymptotic cost of polynomial multiplication is ),( ）（ nmO   bit 

operations, where 

 

mnnnmnnnm loglogloglog)(loglog,  ）（ .                                (6) 

 

Given two polynomials ][)(),( xZxbxa p  (p prime) of degree at most n, we can compute 

))(),(gcd()( xbxaxd   in )),(( npO   bit operations, where 

 

ppnnnpnp loglog)(loglog),(),(                                     (7) 

 

The same algorithm also returns )(xs  and )(xt such that )()()()()( xdxtxbxsxa  . The bound 

(7) follows by a straightforward modification of the polynomial gcd algorithm described in [15] 

(Section 8.9: the term ppn loglog)(log  comes from the fact that we must compute the inverse of 

)(nO  elements of pZ ). 

2 Inversion in  1][Z xxx n

m Factorization of m  Known 

In this section we consider the problem of computing the inverse of a RSFMLR circulant matrix over 

mZ  when the factorization  hk

h

kk
pppm 21

21  of the modulus m  is known. We consider the 

equivalent problem of inverting a polynomial )(xf over  1][Z xxx n

m , and we show that we 

can compute the inverse by combining known techniques (Chinese remaindering, the extended 

Euclidean algorithm, and Newton-Hensel lifting). We start by showing that it suffices to find the 

inverse of )(xf  modulo the prime powers
kipi .   

 

Lemma 2 Let hk

h

kk
pppm 21

21 , and let )(xf be a polynomial in ][xZm . Given )(,),(1 xgxg h  

such that )1(mod1)()(  xxxgxf n

i
  in ][xkZ ipi

for hi ,,1 , we can find ][)( xZxg m  which 

satisfies (5) at the cost of )loglog)(log)(log( mmmnhO    bit operations. 

Proof  The proof is constructive. Since )1(mod1)()(  xxxgxf n

i ,in ][
i

xZ
ikp

,we have 

)(mod1)(1)()( i

i

kn

ii pxxxxgxf   Let i

i

k

pi m / . Clearly, for ij  , )(mod0 jk

ji p . 

Since  1),gcd( ik

ii p , we can find i  such that )(mod1 ik

iii p . Let  


h

i iii xgxg
1

)()(  , 
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ii pxgxg  and ))(mod()( ik

ii pxx   . 
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We conclude that )(mod1)(1)()( mxxxxgxf n   , or, equivalently, 

)1(mod1)()(  xxxgxf n
 in ][xZm . 

The computation of )(xg consists in n (one for each coefficient) applications of Chinese 

remaindering. Obviously, the computation of i , i , hi ,,1 , should be done only once. Since 

integer division has the same asymptotic cost as multiplication, we can compute 
hi  ,,  

in ))(log( mhO  bit operations. Since each i  is obtained through an inversion in 
jk

ip
Z , computing 

the h ,1 takes )loglog)(log(
1 

h

j

k

j

k

j
jj ppO   bit operations. Finally, given 

h ,,1  , h ,1 , )(,,)( 1 xgxg h  we can compute )(xg in ))(log( mnhO  bit operations. The 

thesis follows using the inequality 

)log(log))(log(

loglog)(logloglog)(log

abab

bbaa








 

In view of Lemma 2, we can restrict ourselves to the problem of inverting a polynomial over 

 1][Z xxx n

m  when 
kpm   is a prime power. Next lemma shows how to solve this particular 

problem. 

 

Lemma 3 Let )(xf  be a polynomial in ][xZ kp
. If 1)1),(gcd(  xxxf n

in ][xZ p , then )(xf is 

invertible in  1][Z xxx n

pk . In this case, the inverse of )(xf can be computed in 

)),(),(( npnpO k  bit operations, where ),( np  and ),( npk are defined by (7) and (6) 

respectively. 

Proof   If 1)1),(gcd(  xxxf n
in ][xZ p ,by Bezout’s lemma there exist )(xs , )(xt  such that 

)(mod1)(1)()( pxtxxxsxf n   

Next we consider the sequence 

,1mod)()]([)(2)(

),()(

2

11

0





 xxxfxgxgxg

xsxg

n

iii

 

known as Newton-Hensel lifting. It is straightforward to verify by induction that 

)1)(mod(1)()( 2  xxxpxfxg n

ii

i

 . Hence, the inverse of )(xf  in  1][Z xxx n

pk  is 

  )(log xkg . 

The computation of )(xs takes )),(( npO  bit operations. For computing the sequence 

 
)(,),(),( log21 xgxgxg k  we observe that it suffices to compute each ig modulo 

i

p2
 . Hence, the 

cost of obtaining the whole sequence is 
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)),((

)),(),()),((
log

242

npO

npnpnpO

k

k



 
 

bit operations. 

Note that from Lemmas 2 and 3, we find that the condition given in Theorem 1 is indeed a 

sufficient condition for invertibility of a RSFMLR circulant matrix. Combining the above lemmas we 

obtain Algorithm 1 for the inversion of a polynomial )(xf  over  1][Z xxx n

m . The cost of the 

algorithm is 

)),(),(

loglog)(log)(log(),(

1 




h

j

k

jj npnp

mmmnhOnmT

j


 

bit operations. In order to get a more manageable expression, we bound h  with log m  and jp  with 

jk

jp  . In addition, we use the inequalities ),(),(),( nabnbna   and 

),(),(),( nabnbna  .  We get 

).log),())(loglog(

)),(),(

loglog)(log)(loglog(),(

nnmmmnO

nmnm

mmmmnOnmT











 

Note that if )(nOm   the dominant term is .log),( nnm That is, the cost of inverting )(xf  is 

asymptotically bounded by the cost of executing nlog multiplications in ][Z xm . 

__________________________________________________________________________________ 

 

Inverse 1 )(),),(( xgnmxf   

{Computes the inverse )(xg  of the polynomial )(xf  in  1][Z xxx n

m } 

1. let hk

h

kk
pppm 21

21 ; 

2. for hj ,2,1 ，  do 

3.    if 1)1),(gcd(  xxxf n
in ][Z

jp x  then   

4.        compute )(xg j such that 

)1(mod1)()(  xxxgxf n

j  in ][xZ
jk

jp
 

5.         using Newton-Hensel lifting (Lemma 3); 

6.    else 

7.       return “ )(xf is not invertible”; 

8.    endif 

9.   endfor 

10. compute )(xg using Chinese remaindering (Lemma 2). 

__________________________________________________________________________________  

Algorithm 1 Inversion in  1][Z xxx n

m . Factorization of m  known. 

3   A General Inversion Algorithm in  1][Z xxx n

m  

The algorithm described in Section 2 relies on the fact that the factorization of the modulus m  is 

known. If this is not the case and the factorization must be computed beforehand, the increase in the 

running time may be significant since the fastest known factorization algorithms require time 
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exponential in mlog  (see for example [17]). In this section we show how to compute the inverse of 

)(xf  without knowing the factorization of the modulus. The number of bit operations of the new 

algorithm is only a factor )(logmO  greater than in the previous case.  

Our idea consists in trying to compute )1),(gcd(  xxxf n in ][xZm
using the gcd algorithm 

for ][xZ p . Such algorithm requires the inversion of some scalars, which is not a problem in ][xZ p , 

but it is not always possible if m  is not prime. Therefore, the computation of 

)1),(gcd(  xxxf n
may fail. However, if the gcd algorithm terminates we have solved the problem. 

In fact, together with the alleged gcd )(xa the algorithm also returns )(xs , )(xt  such that 

)()()1()()( xaxtxxxsxf n  in ][xZm . If 1)( xa , then )(xs  is the inverse of )(xf . If 

0))(deg( xa , one can easily prove that )(xf  is not invertible in  1][Z xxx n

m . Note that we 

must force the gcd algorithm to return a monic polynomial. 

If the computation of )1),(gcd(  xxxf n
 fails, we use recursion. In fact, the gcd algorithm fails 

if it cannot invert an element mZy . Inversion is done by using the integer gcd algorithm. If y  is not 

invertible, the integer gcd algorithm returns ),gcd( ymd  , with 1d . Hence, d  is a nontrivial 

factor of m . We use d  to compute either a pair 21,mm  such that 1),gcd( 21 mm  and mmm 21 , or 

a single factor 1m such that mm1  and 
2

1)(mm  . In the first case we invert )(xf  in 

 1][Z
1

xxx n

m and  1][Z
2

xxx n

m , and we use Chinese remaindering to get the desired 

result. In the second case, we invert )(xf  in  1][Z
1

xxx n

m  and we use one step of Newton-

Hensel lifting to get the inverse in  1][Z xxx n

m .  

The computation of the factors 21, mm is done by procedure GetFactors whose correctness is 

proven by Lemmas 4 and 5. Combining these procedures together we get Algorithm 2. 

__________________________________________________________________________________ 

 

Inverse 2 )()),(( xgmxf   

{Computes the inverse )(xg of the polynomial )(xf  in  1][Z xxx n

m } 

1.          if 1)1),(gcd(  xxxf n
 then 

2.            let )(xs , )(xt such that 1)()1()()(  xtxxxsxf n
 in ][xZm ; 

3.                return )(xs ; 

4.            else if )()()1),(gcd( xaxtxxxf n  , 

0))(deg( xa  then 

5.                  return “ )(xf is not invertible”; 

6.          else if )1),(gcd(  xxxf n
 fails let d be such that md ; 

7.                 let ),( 21 mm GetFactors ),( dm ; 

8.                  if 12 m , then 

9.                      )(1 xg Inverse 2 )),(( 1mxf ; 

10.                    )(2 xg Inverse 2 )),(( 2mxf ; 

11.                    compute )(xg  using  

Chinese remaindering (Lemma 2); 



8

1234567890

MSETEE 2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 81 (2017) 012200    doi   :10.1088/1755-1315/81/1/012200

 

12.                else 

13.                     )(1 xg Inverse 2 )),(( 1mxf ; 

14.           compute )(xg using Newton-Hensel lifting (Lemma 3); 

15.                endif 

16.                return )(xg ; 

17.         endif 

GetFactors (m;d)!(m1;m2) 

18.     let  ),gcd(
log

1

m
dmm  ; 

19.      if 1)/( 1 mm  then 

20.          return )/,( 11 mmm ; 

21.     endif 

22.     let dme  ; 

23.     let  ),gcd(
log

1

m
emm  ; 

24.     if 1)/( 1 mm then 

25.          return )/,( 11 mmm ; 

26.     endif 

27.     let 1m lcm ),( ed ; 

28.     return )1,( 1m ; 

__________________________________________________________________________________ 

Algorithm 2 Inversion in  1][Z xxx n

m  . 

 

 Factorization of m unknown. 

The following Lemma 4 and Lemma 5 proved in [3]. 

Lemma 4 Let ， 1 , be a divisor of m and let  ),gcd(
log m

m   . Then,   is a divisor of 

m  and 1)/,gcd(   m . 

Lemma 5 Let ， be such that m  and     mmm
mm

 ),gcd(),gcd(
loglog  .Then 

 ),(lcm   = ),gcd(/ m  is such that m/ and 
2/ m . 

Theorem 2 If )(xf  is invertible in  1][Z xxx n

m , Algorithm 2 returns the inverse )(xg  

in )log),(( mnmO   bit operations. 

 

Proof One can easily prove the correctness of the algorithm by induction on m , the base on the 

induction being the case in which m is prime where the inverse is computed by the gcd algorithm. 

To prove the bound on the number of bit operations we first consider the cost of the single steps. 

By (7) we know that computing )1),(gcd(  xxxf n
takes 

)loglog)(loglog),((O)),(( mmnnnmnmO  bit operations. By Lemma 2, we know that 

Chinese remaindering at Step 11 takes )loglog)(log))(log( mmmnO   bit operations. By 

Lemma 3 we know that Newton-Hensel lifting at Step 14 takes )),(( nmO   bit operations. Finally, it 

is straightforward to verify that GetFactors computes ),( 21 mm  in )loglog)(log( mmO   bit 

operations. We conclude that, apart from the recursive calls, the cost of the algorithm is dominated by 

the cost of the gcd computation no matter which is the output of the gcd algorithm. Hence, there exists 

a constant c  such that the total number of bit operations satisfies the recurrence 

),(),(),(),( 21 nmTnmTnmcnmT  , where we assume 0),( 2 nmT if 12 m . Let 
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hk

h

kk
pppm 21

21  denote the prime factorization of m . Define hkkkml  21)( . We now 

show that ),()(),( nmmclnmT  . Since )log()( mml   this will prove the theorem. We prove the 

result by induction on )(ml . If 1)( ml , then m  is prime and the inequality holds since the 

computation is done without any recursive call. Let 1)( ml . By induction we have 

).,()(),(),,()(),( 222111 nmmclnmTnmmclnmT   We have 

)],,(),(][1)([),(),( 21 nmnmmlcnmcnmT  which implies the thesis since  

 nmnmnm ,),(),( 21  . 

In addition, by Lemma 1 (i) (ii), Algorithm 1 and Algorithm 2, it is easily to get two algorithms for 

inverting RSLMFL circulant matrices over mZ , respectively. 

4   Conclusion 

In this paper, the problem of inverting an nn  RSFMLR circulant matrix with entries over mZ  is 

studied. Two different algorithms are presented. Furthermore, for each algorithm the cost in terms of 

bit operation are given. Finally, the extended algorithms is used to solve the problem of inverting 

RSFMLR circulant matrices over mZ . 
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