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Abstract. Geographic information system and remote sensing techniques can be used to assist 
with distribution modelling; a useful tool that helps with strategic design and management 
plans for MPAs. This study built a pilot model of plankton biomass and distribution in the 
waters off Solor and Lembata, and is the first study to identify marine megafauna foraging 
areas in the region. Forty-three samples of zooplankton were collected every 4 km according to 
the range time and station of aqua MODIS. Generalized additive model (GAM) we used to 
modelling zooplankton biomass response from environmental properties.Thirty one samples 
were used to build a model of inverse distance weighting (IDW) (cell size 0.01o) and 12 
samples were used as a control to verify the models accuracy. Furthermore, Getis-Ord Gi was 
used to identify the significance of the hotspot and cold-spot for foraging area. The GAM 
models was explain 88.1% response of zooplankton biomass and percent to full moon, 
phytopankton biomassbeing strong predictors. The sampling design was essential in order to 
build highly accurate models. Our models 96% accurate for phytoplankton and 88% accurate 
for zooplankton. The foraging behaviour was significantly related to plankton biomass 
hotspots, which were two times higher compared to plankton cold-spots. In addition, extremely 
steep slopes of the Lamakera strait support strong upwelling with highly productive waters that 
affect the presence of marine megafauna. This study detects that the Lamakera strait provides 
the planktonic requirements for marine megafauna foraging, helping to explain why this region 
supports such high diversity and abundance of marine megafauna. 

1.  Introduction 
Numerous scientific publications have reported marine megafauna population declines in recent 
decades, largely due to fisheries and other anthropogenic threats [1].As a result, there have been an 
increasing number of studies focused on establishing marine megafauna spatial models to identify key 
habitat and conservation priority areas. Geographic information system (GIS) and remote sensing (RS) 
techniques can be applied to assist with distribution or habitat modelling of highly migratorymarine 
megafauna[2, 3]. Moreover, GIS can be a useful tool that assistswith the strategic design and 
development of both terrestrial and marine conservation planning. Three components are fundamental 
to develop species distribution or habitat models;(i) biotic, which are related to ecological 
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communities and the role of each species in the food web, (ii) abiotic, whichare the physical 
environment requirements of a species, and (iii) movement, whichisthe opportunitya species has to 
reach a suitable location for their abiotic and biotic requirements[4].  

Firstly, biotic components are important in understanding how different species interact with each 
other and the resultingconsequences; for example, many marine megafauna species (e.g. cetaceans) 
feed on high densities of small animals such as krill and small fish [5]. As a result, understanding 
zooplankton biomass is critical in modelling marine megafauna distribution and behaviour [6-7], 
andmany studies have documented positive correlations between the occurrence of cetaceans and the 
distribution and abundance of zooplankton [9, 10]. These related ecological system, which are 
zooplankton transfer energy from primary producers toconsumers at higher trophic levels, such as fish 
and marine mammals [8]. Secondly, abiotic components(i.e. temperature, bathymetry,) are important 
in understanding theenvironmental requirements of marine megafauna species, which move actively 
both horizontally and vertically throughout the water column. For example, species may have specific 
thermal requirements needed to support their metabolic process [11]. Thirdly, it is important to 
understand species capability and opportunityto move and reach theirrequired biotic and abiotic 
conditions. This is particularly important to determine given the current climate changesituation that is 
altering ocean temperatures.Zooplankton are poikilothermic, which means that their physiological 
processesare highly sensitive to temperature[8, 12, 13], therefore changing ocean temperatures is 
likely to impact the distribution and composition of zooplankton, which in turn willimpact the 
movement and distribution of marine megafauna that prey upon them.  

This study was focused in the Savu Sea off Solor Island (SI) and Lembata Island (LI) in the East 
Nusa Tenggara province of Indonesia.The region is known for its complex, high-energy currents, and 
temperature variation and is an important corridor for cetaceans, mobulids rays and other marine 
megafauna [14, 15]. The waters of SI and LI is critical habitat for marine megafauna, which migrate 
through this region to find high density prey [16]. However, the villages of Lamakera (Solor) and 
Lamalera (Lembata) are traditional and commercial megafauna fishing communities that primarily 
target mobulids, whales, and dolphins and are arguably the biggest artisanal megafauna fisheries in the 
world [17, 19]. Extremely high international demand for mobulids gill plates, and protein needs from 
marine megafauna meat has been driving these fisheries and is likely to have caused as estimated 75% 
decline in catch rate of mobulids in Lamakera over the last 10 years [19].In an effort to conserve 
vulnerable marine megafauna, the Indonesian government declared full protection for cetaceans in 
1999, whale sharks (Rhincodon typus) in 2013, and most recently manta rays (Manta alfredi and 
Manta birostris) in 2014. To support the effectiveconservation and management of marine megafauna 
in the waters of SI and LI, identifying key habitat of marine megafauna in this region is critical. The 
aim of this pilot study was to develop a model fordetermining plankton biomass and distribution in 
order to help predict key foraging habitat for marine megafauna in SI and LI. We expected that our 
models would provide the following information; (i) predictions for zooplankton biomass as an 
ecological response, (ii) the approachesof using GIS and RS techniques to build spatial models to 
determine key habitat of marine megafauna. 
 
2.  Study site and sampling design 
The study was conducted in the waters off SI and LI, East Nusa Tenggara province of Indonesia, 
including the Solor Strait and the Lamakera Strait (Figure 1). This region was chosen as the study site 
due to it’s known abundance of marine megafauna and highly productive waters, in addition the threat 
from targeted megafauna fisheries makes it important from a conservation perspective.Peak season for 
productivity and marine megafauna occurrence is during the eastern monsoon, from June through to 
September, when upwelling divergence in flow transport through the straits (and Ekman pumping) is 
large [20]. Plankton sampling surveys were conducted over five boat tripsbetween the 5th to 18th 
January 2016. Zooplankton was sampled every 4km over the entire the study area (Fig. 1a).    
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Figure 1.Maps of the study site showing a) the location of the zooplankton sampling stations (each 
station is 4km apart), and b) 3D bathymetric visualization of the Savu Sea. 
 

3.  Materials and Methods  
3.1.  Data collection 
3.1.1.  Zooplankton sampling 
Zooplankton was collected using a 300 µm (mesh size) SEAGEAR net with a 30cm mouth diameter 
and 100cm length plankton net, which was trawled behind a speedboat. Trawls were conducted every 
4km (Fig. 1) according to the range time and station of aqua MODIS record in the day we sampled. 
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During each trawl, the plankton net was towed ten meters behind the boat for 10 minutes at the surface 
waters. Mean distance towed was 1340 meters (± 222.5 SD), mean speed towed was 7.75 km/hours (± 
1.3 SD), and mean sampling time was 9:50 AM (± 0.1 SD) such potential time for zooplankton in the 
surface waters. Five percent formaldehyde was used to preserve zooplankton samples until laboratory 
analyses, which was conducted in May 2016. The GPS position was recorded at the start and end of 
each trawl to determine the distance of each plankton towand thevolume of water filtered. 

3.1.2.  Marine megafauna observations  
A Rapid ecological assessment (REA) method was used to investigate the distribution and relative 
abundance of marine megafauna. GPS position are planned to exploring the marine megafauna 
sighting during survey trip [21]. Double platform visual observation method [22]was applied, and 2 
groups of observers were scanning the area using Bushnell binocular marine series with optical 
distance 5km during every REA. A total of five REA trips were conducted on the same day/tripthatthe 
plankton sampling was conducted. Data collected included; start time and finish time of survey trips, 
marine megafauna sighting time, peak marine megafauna encounter time, GPS location of 
sighting,species, behaviour, and approximate number of individuals. In addition, the weather 
conditions during the REA was recorded using a modified Beaufort scale[23]. 

 
3.1.3.  Biophysical satellite oceanography approach 
Satellite oceanography is a crucial tool used for monitoring thedynamics and productivity of water 
masses. Moderate Resolution Imaging Spectroradiometer (MODIS) level 3 from NASA was used to 
derive sea surface temperature and chlorophyll-a concentration at a 4km spatial resolution for the dates 
of our survey period. Chlorophyll-a concentration as a photosynthetic pigment mg.m-3, is commonly 
used as a proxy for phytoplankton biomass in the surface waters (oceancolor.gsfc.nasa.gov). 
 
3.2.  Data analysis  
3.2.1.  Plankton biomass 
In the laboratory, we filtered out 800 ml of each zooplankton sample from everysampling 
station/location using laboratory filter paper with a mesh size < 300 µm. The zooplankton samples 
were then dried in an air-conditioned room for 3 days until the dry weight of the zooplankton 
sampleswere constant. Analytic weight was used to measure the dry weight of zooplankton, and mg.m-

3was used as the dry weight unit of zooplankton based on the following equation: 
Filtered volume 

Zooplankton biomass mg. m�� =
��� ������� ��

����� ������� ��  (1) 

 
3.2.2.  Modelling Approach 
Conventionally, linier regression has been used to determine the relationshipbetween zooplankton and 
phytoplankton, and in some cases there have beenstrong positive correlation, likely due toa food chain 
structure of zooplankton feeding upon phytoplankton. However, coastal and pelagic ecosystems are 
vast, dynamic and complex systems that will be more challenging for modelling linearity. We used 
generalized additive models (GAMs the mgcv R-package [24]) to address the issues, as they are 
powerful tools for modeling nonlinear relationships between zooplankton biomass and environmental 
properties.The final model waschosen based on the determination value (R2) and Akaike Information 
Criterion (AIC) values, where the lowest AICand highest determination valueshow better performance 
in prediction. 

 
3.2.3.  Inverse distance weighting (IDW) 
GIS modelling tools are used to conduct spatial interpolation, which estimates the values of unsampled 
points or data gaps in the study area. This approach is extremely useful when studying the vast marine 
environment, where limits such as time and money preventdata collection throughout the whole study 
area. Spatial interpolation is a prediction of a variable at an unmeasured location based on samples at 
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known locations. We used local interpolators of inverse distance weighting because the concept of 
computation is relevant for phytoplankton and zooplankton, where closer points are thought to be 
similar as result of the food web. All feature data was calculatedusing ArcGIS 10.2.2[25], using the 
following equation: 

�� =
∑

��
���

��

∑
�

���
��

    (2) 

Where, Zjis the estimated value for the unsampled point (j), dij is the distance between the known 
sample (i) and the unsampled point(j), Zi is the value of the known sample (i), and n is the user-
defined exponent for weighting. 

 
3.2.4.  Model Verified 
The IDW biomass models of phytoplankton and zooplankton, which we applied,are tested to measure 
the accuracy prior to conducting further analyses to identify the foraging area of marine megafauna in 
the study region. 12 samples were used and the following equation was applied: 

 

RE =  
(���)

�
� 100 %                               (3) 

MRE = ∑
��

�

�
���                            (4) 

 
Where, X is the field data, C is the model data.Relative error (RE) is the percentage error of the 
model’s result compared with the field data, and mean relative error (MRE)is the mean percentage 
error from the 12 samples that were tested. 
 
3.2.5.  Hot spot analysis (Getis-Ord Gi*) 
We used clustering biomass models of phytoplankton and zooplankton every 0.01o (100 meters to 100 
meters) to identify marine megafauna foraging sites in our study area. This analysis used the Getis-Ord 
Gi* [26] to identify statistically significant high values (hotspots) and low values (cold-spot) for 
foraging requirement of marine megafauna. Since its development in the mid-1990s the Getis-Ord Gi* 
has been applied to analysing clustering in spatial data (point or area) and can be used to identify 
explicit areas of high use based upon specific test criteria, independent of the magnitude of abundance. 
TheGetis-Ord Gi*has been used substantially in recent years in various research areas [27-28]. The 
Getis-Ord statistic is given by the following equation: 

 

��
∗(�)=

∑ � �,�
�
��� ��,� − �� ∑ � �,�

�
���

� �
(�∑ � �,�

��
��� �(∑ � �,�

�
��� )�)

���

 

�� =
∑ ��

�
���

�
 

� = �
∑ ��

��
���

�
− (��)�                         (5) 

 
G�

∗ xi is calculated by the attribute value for feature (j), wi, j is the spatial weight between features i 
and j, n is equal to the total number of features and the G�

∗statistic calculated in this way is a Z-score 
(no further calculations are needed). Statistical significance of hot-spot and cold-spot are a measure 
from the Z-score and p-value which tell us whether or not to reject the null hypothesis, feature by 
feature. We applied a fixed distance band to get conceptualization of the spatial relationship and 
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Euclidean to measure the distance method. Statistical test result of significant hot and cold spots are 
showing (+/-) 3 bins reflect statistical significance with a 99 percent confidence level;  (+/-) 2 bins 
reflect a 95 percent confidence level; (+/-) 1 bins reflect a 90 percent confidence level; and the 
clustering for features in bin 0 is not statistically significant. All calculation were carried out using 
ArcGIS 10.2.2[25]. 

4.  Results and Discussion 
4.1.  Marine megafauna sighting 
Marine megafauna was sighted 83% of the time during marine megafauna observation and 
zooplankton trawling surveys. A total of six observation survey days were conducted with a mean 
observation time ofnine hours per trip, from7am to 5pm.Most observation survey trips covered the 
whole study area around SI and LI. The majority of dolphin sightings occurred in the morning 
between 9am and 10am, with peak encounter time 09:20am. Tidal phase significantly affected dolphin 
occurrence with most sightings(61%)occurringduringan ebb tide. A similar pattern was found in Lady 
Elliot Island (LEI), Australia for reef manta ray (Manta alfredi), where feeding manta rays were 
observed more frequently during an ebb tide, due to a higher abundance of prey (zooplankton) 
accumulating around LEI during this tidal phase [29-30].  Tidal current is highly driven by the moon 
and during our surveys, waning crescent was the most frequentmoon phase. Results from theGAMs 
models (figure 2), show that the waning crescent moon phase with the percent of full moon between 
2.3% - 27.8% has significant correlation with zooplankton biomass,thus drivingthe occurrence of 
higher tropic level species such as small fish and dolphins. Furthermore, weather appeared to affect 
the present or absence of marine megafauna in the waters of SI and LI. We observed that marine 
megafaunawere most commonly sightedwhen the weather conditionswere calmto slightwind and wave 
(see Table 1).  

During the entire survey periodthe mean number of dolphins observed was 29 individuals (± 15 
individuals SD, n=6), and88% of the time they were observed feeding, and were frequentlyobserved 
with large schools of fish and on occasion sharks were also observed hunting on the same school of 
fish. This usually occurred in the morning when productivity was higher. 

Marine megafauna was commonly present in locations that showed higher productivity. These 
higher productivity locations showed a mean biomass of0.18 mg.m-3 (± 0.03 mg.m-3 SD) for 
phytoplankton, and a mean biomass of0.7 mg.m-3(± 0.25 mg.m-3 SD) for zooplankton. Although, 
significant upwelling currents did not occur during the January survey period, which is outside of the 
peak productivity months, our results indicate that,certain marine megafauna species such as dolphins 
still utilise the region, particularly higher productivity spots. Moreover,bathymetry maps of the 
channel between SI and LI (Lamakera Strait) are showing in figure 6a, show that the region is 
characterized by complex continental slope between 00 – 900, and the area in which dolphins were 
frequently observedwas over a slope of460 (± 27 SD).It has been reported that gentle continental 
slopessupport strong upwelling currents and thus highly productive waters that affect the presence of 
marine megafauna. In the Gulf of Mexico, Risso’s dolphins were regularly sighted along the step of 
the upper continental slope,an area that provides high productivity [31]. The authors (MIH Putra and S 
Lewis, Persobs) have observed high diversity and abundance of marine megafauna (including, whales, 
dolphins, manta rays, whale sharks and ocean sunfish) using the Lamakera strait at other times of the 
year outside of the study period, suggesting that this areais akey habitat for marine megafauna.Both 
dolphins and whales have been observed resting in surface waters(logging behaviour), and also 
hunting on schools of small fish in the Lamakera Strait approximately 4.75 km (± 2.3 km SD) from 
land (figure 6), this indicates that the area is likely to be important cetacean habitat for both feeding 
and resting. 

During our observation surveys, we were also successful in identifying hawks bill turtles, which 
were observed actively swimming in surface watersmost commonly in the morning. Sea turtles are 
grazers of macro algae and also predateon some invertebrates. Hawksbill turtles were sighted in a high 
productivity location(figure 6), Phytoplankton biomass in this location was 0.16 mg.m-3 and 
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zooplankton biomass was0.67 mg.m-3. It is likely that the relative high productivity in this area is a 
driver in turtle occurrence at this location, as the high productivity suggests that there are greater 
feeding opportunities here compared to areas with lower productivity. Turtles in Ningaloo Reef, 
Western Australia, have also shown a similar pattern with peak sightings occurringin March, which is 
a time of high productivity for the region [32] 
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4.2.  Environmental drivers on predicting zooplankton biomass response 
The GAMs for zooplankton biomass and environmental predictor was tested in 2 model scenarios, 
which are shown in figure 2. The first model examines zooplankton biomass as a response of the 
predictors (percent to full moon, distance of sampling station to the coast, sea surface temperature, 
and phytoplankton biomass) and was explained as 87.7% of the deviance of zooplankton biomass in 
the waters of SI and LI. Results from the first model shows that moon phase (F= 3.6, edf= 5.6, p<0.05) 
and phytoplankton biomass (F= 9.3, edf= 7.85, p<0.05) were a more significant predictor for 
zooplankton biomass response than sea surface temperature (F= 4.9, edf= 1.8, p<0.05). Zooplankton 
biomass was not significantly related to distance of sampling station to the coast (F= 0.4, edf= 1, 
p>0.05). The second model shows the zooplankton biomass as the response of predictors (percent to 
full moon, phytopankton biomass, sea surface temperature, and time of sampling to high tide) was 
88.8 % of the deviance of zooplankton biomass, which was higher than model 1. Model 2 identified 
moon phase (F= 4.9, edf= 7.6, p<0.05), phytoplankton biomass (F= 4.6, edf= 6.4, p<0.05) and sea 
surface temperature (F= 11.54, edf= 1, p<0.05) as the most important predictor. However,time of 
sampling to high tide (F= 1.8, edf= 2.2, p>0.05) which were not significant predictors. 

 

 
 

Figure 2. Generalize adaptive models final output of zooplankton biomass as the respone of a) percent 
to full moon, distance to coast, sea surface temperature, and phytoplankton biomass; b) percent to full 
moon, phytopankton biomass, sea surface temperature, and time of sampling to high tide. Zero on the 
y axis indicates no effect of the predictor. The magnitude reflects the importance of variable. Shade 
lines and error bars represent 95% confidence intervals. 
 

The first predictor, which was the fraction of moon illumination (percent to full moon)was the most 
significant predictor for both model 1 and model 2, which showed a higher zooplankton biomass 
response than the other predictors. Waxing gibbous and waning gibbous are the moon phases with the 
highest response of zooplankton biomass (figure 2), the magnitude of zooplankton biomass 
significantly increased during these moon phases. A similar pattern was observed in 2015, where catch 
rate of the planktivore feeder, Manta birostris, was three times higher during waxing gibbous and 
waning gibbous moon phase (Misool Baseft in unpublished data). However, studies in Komodo 
National Park (KNP) and Lady Elliot Island (LEI) showed a different pattern. Manta rays were more 
abundant in KNP and LEI during the new moon and full moon when the tidal flux was highest [29, 
33]. In contrast, the waters of SI and LI showed that during the full moon and new moon mobulids ray 
catch (i.e. Manta birostris, Mobula japonica, and Mobulatarapacana) in Lamakera were the lowest. 
The fraction of moon illuminated (percent to full moon) is a key factor that Lamakeran fisherman use 
to determine a potential hunting period, which reportedly starts two-four days after the new moon, i.e. 
a waxing crescent moon [19]. GAMs models indicate that the beginning of a waxing crescent moon (0-
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10 percent to full moon)significantly influences the response of zooplankton biomass, and thus drives 
the occurrence of higher trophic level species such as manta rays, dolphins and other marine 
megafauna in the waters of SI and LI. The second predictor, phytoplankton biomass, also significantly 
correlated with zooplankton biomass in both model 1 and model 2. Since satellite-derived chlorophyll-
a concentration appears to be a proxy for biomass of zooplankton, satellite data is animportant 
predictor for studying marine megafauna[29, 34].The third predictor, sea surface temperature,is 
commonly reported as being a critical predictor for modelling zooplankton.Several studies have 
documented that zooplankton biomass will be higher in cooler temperatures [30]. However, in this 
study both model 1 and model 2 found thatthere was a positive correlation between warmer SST and 
zooplankton biomass. However, this result does not necessarily signify that higher zooplankton 
biomass will be found in in warmer temperatures, this is because in the study region there is very little 
temperature variation in January with temperature range generally between 29oC – 30oC. Further 
analysis throughout the entire year is needed to determine the effect of SST on zooplankton biomass. 

 
Table 2. Candidate generalize addaptive models for predicting zooplankton biomass 
as the function of various candidate explanatoryvariables, with a comparison of the 
model’s goodness-of-fit in terms of coefficient of determination value (R2) and Akaike 
Information Criterion (AIC) values. Model 2 was the better candidate model, which 
more lower AIC value and highest determination value. 

Model R2 GCV 
Score 

AIC 
Deviance 
explained 

Model 1= Zooplankton ~s(Moon)+ 
s(Coast)+s(SST)+s(Phytoplankton) 

0.79 0.012 -71.33 87.7% 

Model 2 = Zooplankton ~s(Moon)+ 
s(Phytoplankton)+s(SST)+s(Tide) 

0.81 0.012 -73.69 88.8% 

 
The fourth predictor, tide cycle,has been found by several studies to beanother important predictor 

for modelling zooplankton and thus planktivores [29-30]. Results from our GAMs output showed that 
tide cycle did not significantly effect zooplankton biomass in this study. This is contradictory to other 
studies that have shown a strong relationship between tide and zooplankton biomass. However, this is 
a similar case to that of reef manta rays and whale sharks in southern Mozambique that showeda weak 
relationship with the time to high tide [35]. Our fifth predictor, distance of sampling station to the 
coast, showed no significant correlationto zooplankton biomass. This result is similar to a study in 
Oman, which showed no strong correlation between distance to the coast and cetacean habitat. 

Based on coefficient of determination value (R2) and Akaike Information Criterion (AIC) values in 
Table 2. Model 2 was the most comprehensive and showed better performance in explaining 
zooplankton response to different oceanographic predictors in the waters of SI and LI.   

4.3.  Plankton spatial modelling 
Spatial biomass distribution of both phytoplankton and zooplankton was completed (final) using IDW 
with search radius using variable method, and cell size 0.010 (100 meters to 100 meters). Twelve 
station we used to assess the accuracy ofmodels. Both models of phytoplankton biomass and 
zooplankton biomass was performance in high accuracy. Phytoplankton biomass of IDW models was 
the higher accuracy with mean relative error 4.23%than zooplankton biomass 12.14 % (see Table 3). 
Spatial interpolation of IDW as a part of deterministic interpolation which calculate from measured 
point that are closely and give most influence, than IDW assume that a distance each sampling point as 
critical role on build high accuracy models [36-37]. In this case, phytoplankton and zooplanktonwas 
sampled each 4 km according a station sample of Aqua MODIS (4km or level 3) for this region as 
figure 1 showed. Sampling effort which was conducted show that the plankton distribution was 
affected by sampling density and distance each sampling station. Although, spatial interpolation are 
available in several method such as kriging and spline, some researcher was found that no significant 
differences between method. The most significant for build a high-resolution spatial models is 
sampling density [38]. 
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Spatial analysis of plankton distribution in this study was show that are both phytoplankton (0.14 
mg.m-3) and zooplankton (1.45 mg.m-3)was higher in Lamakera strait and west part of SI. The spatial 
patterning was get smooth on colouring transition as results fromdensity and distance station sample 
which showing Figure 1, 3a and 3d. Based on results of GAMs models, the phytoplankton biomass is a 
strong predictor for modelling zooplankton biomass and that are was approved by spatial models 
which was recognise that are phytoplankton biomass drives zooplankton biomass distribution. 
Although, in some cases there are not positive correlate as effects of role from other predictor such as 
tidal current which drives and accumulate zooplankton in sheltered and shallow waters location such 
in SI bay area (Figure 3a).Study in Kilindoni Bay off Mafia Island, Tanzania was found there are tidal 
currant play a critical role in accumulate zooplankton in this area and motivate whale sharks to feeding 
in regularly[39-40].  

 
Table 3.Accuracy assessment of inverse distance weighting models (0.01o) of zooplankton biomass 
and phytoplankton biomass. (RE %) is relative error between models output and field data each station 
“control”, and (MRE %) mean relative error is relative error for full model. 

Station 
ID 

Field data 
zooplankto
n biomass 
mg.m-3 

IDW model 
zooplankto
n biomass 
mg.m-3 

RE 
(%) 

MRE 
(%) 

Satellite data 
phytoplankto
n biomass 
mg.m-3 

IDW model 
phytoplankto
n biomass 
mg.m-3 

RE 
MR
E 

2 0.78 0.65 
16.5

9 
12.14 0.17 0.17 0.00 4.23 

13 0.82 0.78 4.34 
 

0.28 0.21 26.32 
 

22 0.49 0.54 
11.0

8  
0.15 0.15 0.00 

 

24 0.66 0.51 
22.5

7  
0.15 0.15 0.00 

 
25 0.51 0.55 8.23 

 
0.16 0.16 0.00 

 
32 0.44 0.48 9.22 

 
0.14 0.15 5.63 

 
33 0.81 0.54 

33.6
0  

0.16 0.16 0.00 
 

40 0.52 0.55 6.41 
 

0.18 0.18 2.70 
 

43 0.53 0.54 1.65 
 

0.15 0.16 6.67 
 

44 0.44 0.47 7.45 
 

0.15 0.15 0.00 
 

45 0.42 0.50 
19.9

7  
0.18 0.17 8.11 

 
48 0.45 0.47 4.57 

 
0.14 0.15 1.35 

 

4.4.  Detecting the foraging area of marine megafauna in the waters of Solor 
Based on spatial interpolation output, 129014 station data with spatial resolution 0.01owas we test 
using Getis-Ord Gi*spatial statistical analysis to generate area which identify as hotspots (high 
productivity) and cold-spot (low productivity) both phytoplankton and zooplankton. Four map ware 
generate to identify foraging area of marine megafauna in the waters of SI and LI: Figure 3c and 3f are 
visualize from a Z-score to determining confidence thresholds of hotspots and cold-spot both 
phytoplankton and zooplankton. Moreover, to identify foraging area we classify the significances 
hotspot of biomass threshold as 90%, 95%, and 99% or 99.9%.Statistical significant 90% of 
phytoplankton biomass hotspots was (lowest Z-score 1.645, p-value 0.099, phytoplankton biomass 
0.177 mg.m-3; highest Z-score 1.957, p-value 0.05, phytoplankton biomass 0.188 mg.m-3), 95% of 
hotspots (lowest Z-score 1.977, p-value 0.047, phytoplankton biomass 0.179 mg.m-3; highest Z-score 
2.573, p-value 0.01, phytoplankton biomass 0.189 mg.m-3), 99% and or99.9% of hotspots (lowest Z-
score 2.581, p-value 0.0098, phytoplankton biomass 0.194 mg.m-3; highest Z-score13.66, p-value 0.00, 
phytoplankton biomass 0.25 mg.m-3). Zooplankton biomass threshold for statistical significant of 90%  
hotspots (lowest Z-score2.543, p-value 0.01, zooplankton biomass 0.662 mg.m-3; highest Z-score 
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2.872, p-value 0.004, zooplankton biomass 0.676 mg.m-3), 95% hotspots (lowest Z-score 2.876, p-
value 0.004, zooplankton biomass 0.677 mg.m-3; highest Z-score3.504, p-value 0.0004, zooplankton 
biomass 0.754 mg.m-3), 99% and or 99.9%hotspots (lowest Z-score3.51, p-value 0.0004, zooplankton 
biomass 0.755 mg.m-3; highest Z-score23.01, p-value 0.00, zooplankton biomass 1.445 mg.m-3).Figure 
3b and 3e is spatial clustering based on Z-score and p-value, a highest Z-score and smallest p-value are 
indicated as hotspots for both phytoplankton biomass and zooplankton biomass. Then, a low negative 
Z-score and smallest p-value are indicated as cold-spot for both phytoplankton biomass and 
zooplankton biomass. Z-score near zero will classify as no clustering.   
 

 
Figure 3. Spatial analysis of biomass distribution models of IDW(row 1); statistical 
significant hotspot and cold-spot Getis-Ord Gi*(row 2); Gi*Z-score statistical significance 
threshold values; column right as zooplankton and column left as phytoplankton. Red 
colour as indicated high value (hotspots), blue colour as indicated low value cold-spot.   
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Figure 4.Comparison biomass by statistical significant clustering of Getis-Ord Gi* a) 
phytoplankton mg.m-3, b) zooplankton mg.m-3. 
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Figure 5.zooplankton group composition in different station; location with the highest 
productivity are dominated with macro zooplankton such i) shrimp, ii) crab, iii) crab, iv) crab; 
and location with lowest productivity are dominated withv) copepods, vi) egg vii) mollusca, vii) 
chaetognatha. 

 

Overall, Getis-Ord Gi* spatial statistical analysis was identify a potential hotspots for foraging area 
based on plankton biomass modelling which are distribute in high dense patch in Lamakera strait. A 
high dense patch of hotspots are exist in small area an approximately 15% - 30% of total waters off SI 
and LI. Plankton biomass was higher in specific location which has characterize by oceanographic 
process in this region.Combined by tidal currents surrounding straits of Solor, Lamakera, and 
Bolinghas driving zooplankton from various direction to the same place in Lamakera strait. 
Bathymetric across this channel are quite shallow in the north part and extremely slope in the south 
part off SI and south west of LI, which has provide a strong upwelling and drives a water masses from 
Savu Sea with high productivity in Lamakera strait (see Figure 6). Interestingly, that combination has 
resulting current turbulence and accumulate high dense patch of zooplankton biomass in this area. 
Shrimp and crabhas dominate the zooplankton composition in the waters with high productivity, which 
mean there are is main key on transferring energy to marine megafauna in trophic ecology (Figure 5) 
[41]. Environmental drives has strong explanatory for the dynamics of zooplankton in this area. A 
comparison biomass by statistical significances as Figure 4 showed we used to approvingthis theory. 
Statistical test was show that are 99% significant hotspot are have high range than other classify, that 
indicated something exceptionally unusual has happened at this location in terms of the 
spatialconcentration of biomass was higher in Lamakera strait as results environmental drives. 
Statistical one t-test we used to generalize a significances of hotspot analysis. The results was showed 
the foraging behavior was significantly related to plankton biomass hotspots (see Figure 6), which 
were two times higher compared to plankton cold-spots of phytoplankton (0.2 ± 0.01 SD vs 0.14 ± 
0.003 SD mg.m-3) and zooplankton (0.87 ± 0.17 SD vs 0.41 ± 0.01 SD mg.m-3). Whale sharks in 
Kilindoni Bay, off Mafia Island, Tanzania was show same pattern that the foraging area was 
characterize by high dense patch zooplankton which 10 times higher (25 vs. 2.6 mg m-3) [40].  
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Table 4.Statistical summary and sample one t-test of plankton biomass Getis-Ord Gi*output. 

Plankton Getis-Ord Gi* 
Mean biomass 
mg.m-3 

SD CV p-value  
95% confidence 
interval (mg.m-3) 

Phytoplankton 
Cold spot 99% 0.148 0.003 0.02 <0.05 0.1482 – 0.1484 
Cold spot 95% 0.151 0.002 0.01 <0.05 0.1516 – 0.1517 

 Cold spot 90% 0.152 0.002 0.01 <0.05 0.1528 – 0.1529 
 Not clustering  0.165 0.006 0.60 <0.05 0.1653 – 0.1654 
 Hot spot 90% 0.180 0.002 0.01 <0.05 0.1803 – 0.1805 
 Hot spot 95% 0.183 0.003 0.01 <0.05 0.1833 – 0.1835 
 Hot spot 99% 0.200 0.010 0.06 <0.05 0.2004 – 0.2009 
Zooplankton Cold spot 99% 0.41 0.01 0.04 <0.05 0.408 – 0.411 
 Cold spot 95% 0.43 0.02 0.05 <0.05 0.431 – 0.433 
 Cold spot 90% 0.44 0.02 0.04 <0.05 0.446 – 0.448 
 Not clustering  0.55 0.05 0.09 <0.05 0.554 – 0.555 
 Hot spot 90% 0.68 0.02 0.03 <0.05 0.685 – 0.687 
 Hot spot 95% 0.70 0.02 0.03 <0.05 0.701 – 0.703 
 Hot spot 99% 0.87 0.17 0.19 <0.05 0.865 – 0.876 

 

4.5.  Applied modelling for management and conservation of marine megafauna  
Our models provide fine-scale of the biomass distributionand highlight the importance of prey 
availability on driving a distribution of marine megafauna. The potential of foraging area was 
characterize by environmental properties such as phytoplankton biomass, sea topographic, sea surface 
temperature and tidal current, which provide their environmental requirement for feeding and 
thermoregulation.Three dimensional models of bathymetry in Figure 6a and 6bwas help us to 
understanding the distribution of marine megafauna related characteristic and complexity of sea 
topographic. Extremely step slope, which are characterize Lamakera strait, has support strong 
upwelling and thus highly productive waters that influencing the presence of marine megafauna. Even 
though, in several observation, dolphin has sighting in the location which are not characterize as 
plankton biomass hotspot, but field observation was found that are dolphin move from south part/open 
Ocean to Lamakera strait which are characterize by high productivity.The dolphin was move such 
indicationhas response the area with high productivity. Several animal movement studies has 
documented there are animals has move as a response to exploring food, reproduction, and climate 
change [42].   

Pervious study was found that are this region such critical habitat for some cetacean (i.e. spinner 
dolphin and pantropical spotted dolphin) which can observed every year [43]. This study detects that 
the Lamakera strait provides the planktonic requirements for marine megafauna foraging, helping to 
explain why this region supports such high diversity and abundance of marine megafauna.Modelling 
approach are powerful to help studying marine environmental, which are large area, dynamic, and 
complex. Then, this study has identified that are this location being key habitat for marine megafauna 
and being priority location for conservation. 
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Figure 6.Productivity hotspot as indicated foraging area in this region during field survey in January 
2015. 3D visualization topography models GEBCO of Solor region; a) south part of Solor and b) 
northeast of Solor. Red dots indicated plankton hotspot as statistically significant test of Getis-Ord Gi* 
99%, 95%, 90%. Fish symbol indicated marine megafauna sighting during study. C) 2D visualization; 
red color indicated hotspots of phytoplankton and zooplankton; dark red indicated hotspot overlap 
both phytoplankton and zooplankton. 
 

5.  Conclusion 
Here we present GIS and remote sensing approach to modelling a plankton biomass hotspotswhich 
together triggered the marine megafauna feeding aggregation in the waters of SI and LI. Our GAMs 
model found that are zooplankton biomass was drives by environmental properties such as moon phase 
and phytoplanktonas a higher predictorfor zooplankton biomass response. Linking environmental 
dynamic in understanding the plankton biomass distribution is helpful to figure out the response of 
trophic level above such as small fish which will drives a dolphin.Our spatial statistical analysis 
examine that are a potential of foraging area was 2 times higher of plankton biomass than other 
location which identify as cold-spot. Including zooplankton biomass in predicting critical habitat of 
marine megafauna habitat is important to build high accuracy model, and several studies was examine 
that incorporating prey item was improve cetacean habitat model [2]. Moreover, spatial analysis 
approaches are useful tool that helps managers to recognize a critical habitat for marine megafauna 
especially endangered species, and further to build strategic design and management plans for MPAs.  
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