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Abstract. Riverside groundwater exploitation is one of the main means of utilizing 

groundwater resources. This paper describes the impact of drawdown conditions with changes 

in the river flow and pumping well locations, and analyzes the interaction between the 

groundwater and surface water. Based on long-term hydrological gauging data, abundant 

hydrogeological test data, and the numerical simulation results for a typical well field of the 

Qinbei Power Plant, this paper presents three different cases of pumping well locations and 

four different cases of river flow rates. Finally, the abovementioned cases are integrated into 12 

extraction groups and the drawdown conditions are calculated for each group. The results show 

that, for a given set of flow rate conditions, a location set in a recharge zone exhibited the 

maximum drawdown, while a location in a transition zone had the second-largest drawdown, 

and a location in a discharge zone had the minimum drawdown. In addition, assuming the same 

locations for the pumping wells, the drawdown change from small to large corresponded to 

100%, 75%, 50%, and 25% of the original flow. This paper provides a foundation for future 

study of the calculation of riverside groundwater exploration with changes in the flow rate and 

well locations. 

1.  Introduction 

Riverside groundwater sources offer various advantages such as good supply conditions, minimal 

depth, and ease of exploitation and management. Exploitation near a river is beneficial to the 

development and utilization of water resources. Given the purity of water from the unsaturated zone 

and aquifer, the quality of the riverside groundwater is generally much better than that of the surface 

water. Besides, due to the interaction between the aquifer and river water, riverside groundwater 

provides a high-capacity source of water. Therefore, great importance is currently being attached to 

the development of riverside groundwater resources. 

Although the extraction of riverside groundwater would appear to be the exploitation of 

groundwater, the main supply source is actually the surface water. Groundwater and surface water 

always influence and restrict each other, so that there will be a wide variety of uncertainties when 

performing riverside groundwater exploitation. If there is any irrational exploitation of the 

groundwater, serious problems could result. Therefore, many researchers have been addressing the 

issue of riverside groundwater exploitation.  

Given the special location of riverside groundwater sources, there is always a degree of interaction 

between the groundwater and the surface water, which results in a complex internal relationship. Many 

researchers have attached great importance to this interaction, and have made many valuable 

discoveries. For example, in 1941, Theis calculated the degree of attenuation on river flow of a 

International Conference on Water Resource and Environment 2016 (WRE2016) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 39 (2016) 012013 doi:10.1088/1755-1315/39/1/012013

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



riverside groundwater source [1]. Chen and Yin [2] also used numerical models to analyze the stream 

flow depletion in stream-aquifer systems with a baseflow. Shu and Chen [3] used numerical models to 

calculate the water exchange between the river and groundwater in a river-aquifer system. Wang [4] 

developed a simple, inexpensive instrument that was used to measure streambed parameters under the 

condition of a stream being disconnected from the groundwater. Wallace [5] proposed problems of 

stream depletion resulting from the cyclic pumping of wells and developed equations by applying 

superposition principles to analytical solutions for steady, continuous pumping. Park [6] evaluated the 

interference and ratio of river water at riverbank filtration pumping wells and claimed that well 

interference is caused not only by groundwater drawdown but also by pipe headloss, which depends 

on the flow rate. Wang [7] set up a three-dimensional mathematical model and analyzed the effects of 

river width, partial penetration, and the permeability of riverbed sediments on groundwater recharges. 

The results showed that riverside pumping may cause groundwater to flow beneath the partially 

penetrating river, and that the river width, penetration, and riverbed permeability obviously influence 

flows from the partially penetrating river and constant-head boundaries. 

Based on the above research, this study set out to analyze the hydrogeological conditions of a 

typical riverside groundwater resource area, as a basis for establishing a valid numerical groundwater 

model. Careful analysis of the groundwater dynamics was performed under different flow conditions 

and a variety of well locations. The drawdown changes were calculated under different exploited cases. 

This paper provides the necessary theoretical basis and a specific means of calculating the scientific 

development of a riverside groundwater exploitation program.  

2.  Method 

2.1.  Description of study area 

The study area was the Qinbei Power Plant in Jiyuan City, Henan Province, China (Figure 1). The 

general trend of the local terrain is from north to south, west to east. Taihang Mountain is in the north, 

and the alluvial sectors of the Qin River are in the south. There is abundant rainfall, and according to 

data gathered between 1956 and 2000, the average annual precipitation is 644.2 mm. The maximum 

recorded precipitation was 1027.3 mm in 1964, while the minimum recorded amount was 311.5 mm in 

1997. 
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Figure 1. Location and contour map of aquifer thicknessin study area:  

Qinbei Power Plant, China. 

The main river in the study area, the Qin River, has its source in Shanxi Province, and flows from 

north to south and then though Henan Province, finally emptying into the Yellow River. In this study 

area, the interaction between the groundwater and surface water changes.   

In the area from Wulongkou to Shagou, the groundwater flows in the same direction as the Qin 

River. Because the river level is higher than that of the groundwater, the groundwater starts to receive 

seepage from surface water. In the area after Shagou, the riverbed elevation becomes lower and the 

slope increases. Therefore, the groundwater overflows and drains into the river. The relationship 

between the groundwater and surface water thus changes. In addition, some of the groundwater will 

continue flow eastwards of the downstream direction.  

The extracted groundwater is mainly used for seasonal irrigation. The total irrigation area is 90,950 

acres, of which 50,250 acres are on the left bank. According to the results of previous surveys, the 

amount of industrial water consumption in the study area is 8,261,480 m3/a, the amount of water 

consumed as drinking water is 3,586,100 m3/a, and the amount being extracted for irrigation water is 
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27,058,050 m3/a (a total of 38,905,630 m3/a). Groundwater pollution is not serious. The irrigation 

wells and flow direction are shown in Figure 2.  

 

Figure 2. Distribution of surrounding wells and flow direction. 

In this study, a numerical model was established by using Visual Modflow software.Modflow, a 

finite difference method solver developed by USGS, was selected for the groundwater flow model 
[8]

. 

The solution was based on the finite difference method, and the boundaries were generalized into 

GHB. The main sources of recharge are lateral inflows, rainfall infiltration, and water seepage. The 

main discharges are exploitation, evaporation, and the recharging of rivers. As we can see from the 

groundwater dynamic data, the groundwater level in the area fluctuates in a non-steady state. The 

internal structure of the study area is non-homogeneous and isotropic, while it can be regarded as 

being homogeneous in a same parameter partition. The groundwater flow obeys Darcy’s law.  

According to the hydrogeological conceptual model mentioned above, the corresponding 

mathematical model can be established as follows: 

 {

∂

∂x
[K(H − B)

∂H

∂x
] +

∂

∂y
[K(H − B)

∂H

∂y
] + W − QE − QV = μ

∂H

∂t
,     (x, y)ϵD

H(x, y, t)|Γ1
= H1(x, y),    (x, y) ∈ Γ1

                     (1)  

                                              H(x, y)|t=0 = H0(x, y),    (x, y) ∈ D                             (2) 

Where H denotes groundwater level; B denotes elevation of confining bed; K denotes hydraulic 

conductivity; μ denotes specific yield; W denotes the value of recharge; QV denotes the value of 

exploitation; H0 denotes initial head; H1 denotes boundary water level of the calculation period; D 

denotes the total area; Γ1denotes the 1st head boundary.  

Based on the vertical distribution information collected in the study area, the aquifer system can be 

generalized into a single layer and partitioned into 146 rows and 184 columns, the length of each cell 

is 198 meters and its width is 144 meters. The area of this model is a total of 28,494 m
2
. To accurately 

simulate the groundwater flow in the study area, part of the mesh was refined. Lithologic 

characteristics and a large number of pumping test data were taken into account. The study area was 

divided into 15 parameter zones, and the initial values were determined by the pumping test data and 

experience values. For ease of calculation and comparison, in this paper the value of the extraction 

was determined to be 1 m
3
/s.  
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2.2.  Cases of the flow rate 

To illustrate the impact of changes in the drawdown conditions with the river flow, in this paper, four 

different flow rate are presented, namely, 25% of the original flow, 50% of the original flow, 75% of 

the original flow, and 100% of the original flow, respectively. Each case would be incorporated into 

the model, with 10 simulation years being examined to determine the maximum drawdown in the 

aquifer.  

According to the data for the river stage and the runoff between 1983 and 1989 (the minimal-

frequency monthly data were omitted), the relationship between the stage and discharge for the Qin 

River was obtained.  

                                                               h = 6.1× 10−6Q3 − 0.0008Q2 + 141.63                                (3) 

Where h denotes the depth of the water in the river and Q is the runoff.  

 

Figure 3. Stage-discharge curve for Qin River. 

Given the relationship between the water depth and the discharge, the water depth in the Qin River 

could be determined for any flow rate provided the flow rate is known.  

2.3.  Pumping well locations 

The locations of the existing wells around the Qinbei Power Plant is haphazard. Any further 

exploitation of the groundwater in the future will require the development of a scientific exploitation 

plan regarding the locations of the wells. To calculate the impact of the drawdown conditions with 

changes in the well locations, three cases were presented, with pumping wells located in the recharge 

zone, transition zone, and discharge zone, respectively. The extraction rate was set to 1 m
3
/s. The 

simulation time was 10 years. Based on the above, we examined the changes in the drawdown at the 

end of the simulation. The wells were separated by about 8 km in each case (Figure 4). Observation 

wells were set up in the middle of the exploited wells. Finally, any changes in the drawdown 

conditions were recorded in each case.   

y = 6E-06x3 - 0.0009x2 + 0.0423x + 141.63 
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Figure 4.  Locations of pumping wells and parameter partitions. 

3.  Results and discussion 

3.1.  Output of the model  

In this study, a comprehensive analysis of the hydrogeological conditions around the Qinbei Power 

Plant was undertaken, and a numerical groundwater model was constructed. The model was calibrated 

and verified by using the data for 1980 to 1982. Wherein: at the end of 1980, the average error 

between the observed head and the calculated head was 0.868 m, the root mean square was 1.09 m, 

and the standardized RMS was 7.14%. At the end of 1981, the average error was 0.657 m, the root 

mean square was 0.812 m, and the standardized RMS was 5.68%. At the end of 1982, the average 

error was 0.518 m, while the root mean square and standardized RMS were 0.629 m and 4.43%, 

respectively. These results indicate that the model had been established correctly. Using the numerical 

model, we did not establish any Qinbei pumping wells, and instead only considered the exploitation of 

the surrounding irrigation wells. After 10 simulation years, the drawdown condition were as shown in 

Figure 5.  

 

Figure 5.  Drawdown conditions after 10 simulation years. 
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The results of the drawdown showed that the drawdowns in the recharge zone and transition zone 

were larger, while the drawdown in the discharge zone was smaller. However, to determine whether 

there is a close relationship between drawdown and the location, the pumping wells should be set in a 

different location and the simulation performed carefully. In addition, considering the uncertainty of 

the river flow in the accrual work, observation of the relationship between the river flow rate and 

groundwater drawdown is necessary. 

3.2.   Results for different cases 

On several occasions, the numerical simulation gives consolidated results for different cases, as shown 

in Figure 6 and listed in Table 1 (both flow rate and pumping well location). 

Table 1.  Results of drawdown conditions for different cases. 

Percentage of original flow 
Pumping well locations 

Recharge zone Transition zone Discharge zone 

25% 31.11858 21.69895 19.96265 

50% 30.36571 21.2009 19.23537 

75% 29.13726 20.0006 18.501 

100% 28.93994 19.5062 17.38377 

 

 

Figure 6.  Results obtained for different cases. 

Table 1 shows that, when the extraction volume is set to 1 m
3
/s, under the same flow rate 

conditions, the location in the recharge zone has the maximum drawdown, with the value ranging from 

28 m to 31 m. The transition zone exhibits the second-largest drawdown, ranging from 19 m to 21 m. 

The discharge zone is the minimum drawdown area, ranging from only 17 m to 19 m.  

As can be seen from the results above, when the pumping wells are located in the recharge zone of 

the study area, even though the river water level is higher than the groundwater level, the groundwater 

itself cannot be completely recharged by the river, such that the changes in the drawdown increase. 

Conversely, when the pumping wells are located in the discharge zone, even though groundwater also 

supplies the river, the low elevation of the zone means that the groundwater in the discharge zone can 

be supplied with groundwater from the west, such that changes in the drawdown are minimal. These 
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results tell us that we cannot completely rely on the supply from the river when exploiting riverside 

groundwater. If the terrain is higher, and there is considerable lateral outflow, it may not be possible to 

supply water from the surface quickly enough, causing the drawdown to increase, possibly even 

causing environmental and geological problems.  

In addition, when the extraction volume is set to 1 m
3
/s, for pumping wells in the same locations, 

those corresponding to 25% of the original flow rate have the maximum drawdown, with a value 

ranging from 19 m to 31 m. For the case corresponding to 50% of the original flow rate, the drawdown 

is the second-largest, ranging from 19 m to 30 m. Then, the drawdown for the case corresponding to 

75% of the original flow rate ranges from 17 m to 29 m. Finally, the drawdown for the case equal to 

100% of the original flow rate is the smallest, ranging from 17 m to 28 m. 

We can see that, for different flow rates, the results are in line with people’s perceptions, that is: if 

the river flow rate is larger, the change in the drawdown becomes smaller when extracting 

groundwater. The reason for this is: as the river flow increases, more water is available to recharge the 

groundwater, thus limiting the increasing trend in the drawdown. However, it can be seen from the 

results that, when the river flow rate is increasing (or decreasing), changes in the drawdown are not 

that obvious. In the first part of the study area, the surface water recharges the groundwater; in the 

latter part, however, the relationship between the groundwater and surface water changed, in that the 

groundwater started to recharge the surface water. The complex interaction between the groundwater 

and surface water contributes to the fact that a change in the river flow does not result is a significant 

change in the drawdown.  

4.  Conclusions 

In this study, a comprehensive assessment of the Qinbei Power Plant groundwater resources was 

carried out, and a numerical groundwater model was established. Careful analysis of the dynamics of 

the groundwater for different river flows and different well locations allowed us to determine the 

changes in the drawdown for each case. The following is a summary of the study and our findings: 

 Based on the numerical model, without considering the establishment of any Qinbei pumping 

wells, and only considering the exploitation of surrounding irrigation wells, the drawdown 

was calculated for 10 simulation years. The results showed that the drawdown in the recharge 

zone and transition zone were larger, while the drawdown in the discharge zone was smaller. 

 Four different cases, specifically, (1) 25% of the original flow rate, (2) 50% of the original 

flow rate, (3) 75% of the original flow rate, and (4) 100% of the original flow rate were 

considered. Each case was input into the numerical model to calculate the drawdown 

conditions. 

 Three pumping well location cases have been presented. Pumping wells were located in the 

recharge zone, transition zone, and discharge zone. The extraction amount was set to 1 m
3
/s. 

Each case was input into the numerical model to calculate the drawdown conditions. 

 Based on the numerical simulations, different river flow cases, and different well locations, 

twelve groups of drawdown conditions were analyzed. The results show that, for the same 

flow rate, wells in the recharge zone exhibit the maximum drawdown, those in the transition 

zone have the second-largest drawdown, while the wells in the discharge zone exhibit the 

minimum drawdown. In addition, for pumping wells in the same locations, the drawdown 

changes from small to large for flow rates equal to 100%, 75%, 50%, and 25% of the original 

flow. 
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