
IOP Conference Series: Earth and
Environmental Science

PAPER • OPEN ACCESS

On-the-fly analysis of multi-dimensional rasters in
a GIS
To cite this article: F Abdul-Kadar et al 2016 IOP Conf. Ser.: Earth Environ. Sci. 34 012001

View the article online for updates and enhancements.

You may also like
Call and Response: A Time-resolved
Study of Chromospheric Evaporation in a
Large Solar Flare
Sean G. Sellers, Ryan O. Milligan and R.
T. James McAteer

-

Sunspots, Starspots, and Elemental
Abundances
G. A. Doschek and H. P. Warren

-

Probing the Physics of the Solar
Atmosphere with the Multi-slit Solar
Explorer (MUSE). I. Coronal Heating
Bart De Pontieu, Paola Testa, Juan
Martínez-Sykora et al.

-

This content was downloaded from IP address 18.224.63.87 on 23/04/2024 at 15:55

https://doi.org/10.1088/1755-1315/34/1/012001
https://iopscience.iop.org/article/10.3847/1538-4357/ac87a9
https://iopscience.iop.org/article/10.3847/1538-4357/ac87a9
https://iopscience.iop.org/article/10.3847/1538-4357/ac87a9
https://iopscience.iop.org/article/10.3847/1538-4357/aa7bea
https://iopscience.iop.org/article/10.3847/1538-4357/aa7bea
https://iopscience.iop.org/article/10.3847/1538-4357/ac4222
https://iopscience.iop.org/article/10.3847/1538-4357/ac4222
https://iopscience.iop.org/article/10.3847/1538-4357/ac4222
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstkDQRbpXAllsjHEiYlgMA51F1TBm6kNTUEcYNBSdQL6cdm1CofwmQ_BpT3sgYChXXR1pqzQOWXOukciyIjoIUE5Vjvl0p9ZlI0hT6ZrxKq_yN1g3bxetfUROV5jfXIIu-skxaOpyc8-4ySQwjYkRYlwnP_zERE0SsuW22H8fak0lzoW4Va7yKzQH4cEZ9yHgM8QNWf_YEwMooaAwVwRis7Wp5Je4e6sVJ9pvzD1jFJi-ZGg02I9jqxFsxnhzp8xNDEZ27s5iWxSAhGBLnodY4nmrn-z7M2b68csoPBplAvWpRWK1wQyCpGXbA3WlGWIOdJqJVDfgPMZOzY-HM2J58&sig=Cg0ArKJSzI_JmkKYjzW4&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

On-the-fly analysis of multi-dimensional rasters in a GIS

F Abdul-Kadar
1
, H Xu

1
 and P Gao

1

1Environmental Systems Research Institute (Esri), Redlands, CA, USA

Email: akferoz@esri.com

Abstract. Geographic Information Systems and other mapping applications that specialize in image

analysis routinely process high-dimensional gridded rasters as multivariate data cubes. Frameworks

responsible for processing image data within these applications suffer from a combination of key

shortcomings: inefficiencies stemming from intermediate results being stored on disk, the lack of

versatility from disparate tools that don’t work in unison, or the poor scalability with increasing volume

and dimensionality of the data. We present raster functions as a powerful mechanism for processing and

analyzing multi-dimensional rasters designed to overcome these crippling issues. A raster function

accepts multivariate hypercubes and processing parameters as input and produces one output raster.

Function chains and their parameterized form, function templates, represent a complex image processing

operation constructed by composing simpler raster functions. We discuss extensibility of the framework

via Python, portability of templates via XML, and dynamic filtering of data cubes using SQL. This paper

highlights how ArcGIS employs raster functions in its mission to build actionable information from

science and geographic data—by shrinking the lag between the acquisition of raw multi-dimensional

raster data and the ultimate dissemination of derived image products. ArcGIS has a mature raster I/O

pipeline based on GDAL, and it manages gridded multivariate multi-dimensional cubes in mosaic

datasets stored within a geodatabase atop an RDBMS. Bundled with raster functions, we show those

capabilities make possible up-to-date maps that are driven by distributed geoanalytics and powerful

visualizations against large volumes of near real-time gridded data.

1. Introduction

Over the past three decades, the geographic information science community has been working hard

towards solving the problem of efficiently managing and disseminating very large volumes of

remotely sensed data, and making it available to an end user in a responsive environment, see [1, 2].

The past decade has experienced an explosion in the amount of remotely sensed earth observation data

produced by organizations and government agencies around the world. The corresponding availability

of mature GIS applications that are capable of handling the growing volume and variety of gridded

data indicates that those earlier efforts have paid off well, see for instance, [3]. Contemporary systems

are multi-tiered and distributed with well-established pipelines for efficiently streaming large volumes

of data from the storage systems, NAS, SAN or object store [3], up through the software stack, over

the web, and to the consumer’s device.

The challenge, in this era, is to continually deliver value despite the growth along the dimensions of

volume and variety. Organizations have long expended time and energy on transforming data to

produce information which provide insights, enhance knowledge, and aid in decision-making. A GIS

facilitates value addition through the efficient construction and timely dissemination of well-designed

information products [4]. A data-derived product enables people to intuitively visualize complex

phenomena or serves as an input data source in another transformation. However, traditional

paradigms of workstation-based batch processing break down in the face of “big data.” Systems which

rely exclusively on closed frameworks that do not scale out well are unable to deliver information-

based value effectively. The earth science community is in need of a unifying model that underpins a

9th Symposium of the International Society for Digital Earth (ISDE) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 34 (2016) 012001 doi:10.1088/1755-1315/34/1/012001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:akferoz@esri.com

scalable and extensible framework to drive distributed processing, desktop and cloud-based analysis,

and responsive visualization of very large volumes of multivariate, multi-dimensional gridded data

within a modern GIS.

We define one such model, called raster functions, for the dynamic transformation of rasters. The

constructs described in this article, enable scientists and image analysts to codify, persist, and

disseminate complex parameterized chains of transformations that are constructed using simple

building blocks. These function chains represent an image processing or analytical model which can

be applied seamlessly across the various modalities of interacting with rasters, from desktop

workflows with a single dataset to cloud-based analytics against a catalog of tens of millions of

rasters. The raster function framework drives the visualization and analytical engine within a GIS and

enhances the system with the ability to dynamically construct a wide array of information products

from raw data. The flexibility and portability of raster functions ensure that the lightweight

transformations that define the final product, not the bulky input data sets, are transported around the

system. Raster functions aid in modular development of functionality within a GIS, as described in [5].

Unlike systems that rely on a fixed set of operations, the corpus of raster functions is easily expanded

through the use of a Python API.

In this article, we first present the basic mathematical constructs and the conceptual model for

transforming rasters in the context of a GIS. We then describe the expectations and interactions

between a typical application and a framework derived from that model. In this paper, the

programming interface is described solely in abstract terms within the context of key high-level

interactions with the framework. A more concrete programming interface of the raster function

framework within ArcGIS is described in [6]. We also use instances of raster functions implemented

within ArcGIS to elucidate an alternative measure of complexity of raster-based operations. We

discuss the applicability of raster functions under non-traditional paradigms of data processing and

analytics within a GIS.

2. Definitions and model

In this section, we revisit and extend the mathematical definition of fundamental image processing

concepts. We then derive the conceptual models that embody those definitions. In an intuitive sense,

we can describe a raster as a mapping of each point in a two-dimensional space to a color value.

Building on the notations defined in [7] and [8], given a discrete subspace 𝑍 and a color-space 𝐶, a

raster can be defined as:

𝑅 ∶ 𝑍 → 𝐶, where 𝑍 ⊆ ℝ𝑑 and C ⊆ ℝ (1)

Here, 𝑍 is the domain over which the raster 𝑅 is defined. Additionally, 𝑍 encapsulates all spatial

and spectral aspects of a raster along each dimension such as the coordinate system, the resolution of

the underlying graticule or grid, the extent, and the number of bands. 𝐶 is the range of the raster 𝑅, and

it encapsulates all the familiar radiometric properties of a raster such color-space, the bit depth or data

type used for representing the output pixel value, and the set of valid and NoData pixel values. As an

object, 𝑅 incorporates key properties typically presented as metadata associated with the raster along

with, basically, any parameter that serves to further constrain or describe the domain or range

associated with the raster.

Next, we define a raster dataset as a non-transient object comprising a default instance of a raster

and the associated extents. Here, we define it along the lines of a static object from [7] as a tuple:

𝛿 ≜ (𝑅𝛿 , 𝑍𝛿) (2)

In practice, a raster dataset is typically a format-agnostic representation of an image file stored on

disk or in a database [9]. Such an object is capable of handling transformations between the spatial

domain of the dataset, 𝑍𝛿, and the spatial domain native to the raster 𝑅𝛿. As eluded by [10], the raster

dataset could, for instance, encapsulate the camera model of a remotely sensed image to transform

coordinates from map space, through camera space, to image space. An application also relies on the

dataset object for all higher-level interactions such as accessing or modifying parameters that control

9th Symposium of the International Society for Digital Earth (ISDE) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 34 (2016) 012001 doi:10.1088/1755-1315/34/1/012001

2

metadata, projections and transformations, persistence, etc. Use of the underlying raster is reserved

primarily for reading and writing pixel values.

Now, a raster function is a mapping of a tuple of one or more rasters to another raster:

𝐹𝜋: 𝑅𝑛 → 𝑅 (3)

Here, 𝑛 ∈ ℕ≥0, is the rank of a raster function, and 𝜋 is the set of scalar parameters that further

qualifies an instance of 𝐹. Simply put, a raster function is a parameterized operation capable of

producing one output raster given zero or more input rasters. Conceptually, a function dataset extends

a raster dataset using an instance of a function and an instance of the associated argument set.

It represents a dynamically processed raster, and can be described as a tuple:

𝜙 ≜ (𝐹, 𝜋, 𝑅𝑛, 𝑍) (4)

Here, 𝑛 is the rank of 𝐹, and 𝑅𝑛 represents the n-tuple of rasters derived from various inputs to the

function dataset. Given that a function dataset extends the definition of a raster dataset, and these

datasets can conceptually be treated as rasters, we can rewrite (4) like this:

𝜙𝑖 = (𝐹𝑖, 𝜋𝑖, 𝜌𝑖, 𝑍𝑖),

where 𝜌𝑖 ⊆ {𝜙<𝑖} ∪ {𝛿𝑘: 𝑘 ∈ 𝑁}, and |𝜌𝑖| = 𝑛

(5)

Here, 𝜌𝑖 represents the subset (of cardinality, 𝑛) containing all input rasters for the 𝑖𝑡ℎ function

dataset constructed using all (𝑁) raster datasets and using previously encountered function datasets

(𝜙<𝑖). A composition based on the above recurrence relation is called a raster function chain and

typically serves to encode a multivariate model for raster-based analysis or processing.

A raster function template is an instance of a raster function chain where one or more elements of

𝜋𝑖 or 𝜌𝑖, for some value of 𝑖, represent a place-holder variable and not an actual instance of the scalar

or raster object. Well-crafted raster function templates make analytical models reusable across a GIS.

We discuss interactions using more concrete examples in the next section.

3. Anatomy and interactions

An implementation of a raster function needs to conform to a predefined application programming

interface (API) to enable effective interactions with other components in the GIS, primarily, the parent

function dataset, on aspects associated with pixel data, mask, metadata, and core properties of the

input and output rasters. In this section, we discuss a few key workflows that will allow us to elaborate

on the ensuing interactions between the application and the raster function framework.

3.1. Adding a raster function

Consider the use case of constructing a function dataset, 𝜙𝑖as described in (5), for the simplified

scenario where we have one input raster (𝛿𝑘) or another function dataset (𝜙𝑖−1). Basically, we extend

a function chain by one new function: 𝐹𝑖. This interactive workflow primarily entails a user choosing

from the collection of available raster functions, populating scalar values, and attaching datasets

associated with the function arguments, 𝜋𝑖 and 𝜌𝑖. Assuming the application maintains a set of

references to functions that are available to the user, we would need every raster function to be able to

describe each expected input parameter.

Once the advertised scalar and raster arguments are provided by the user, the application vets and

then loads objects associated with the inputs, and delivers them to the raster function. The function

(𝐹𝑖) then provides the application with the raster info object (𝐼𝐹𝑖
) associated with the output raster.

Raster info is a framework-level construct that encapsulates core properties associated with a concrete

representation of the raster concept described under (1) in the preceding section. As an object, it

describes the resolution and boundary of the native geospatial (or spatio-temporal, or multi-

dimensional) grid over which the corresponding raster is defined. It also describes the radiometric and

spectral properties such as the data type of the pixel, number of bands, the wavelengths associated

with each band, and the distribution of pixel values in the raster.

9th Symposium of the International Society for Digital Earth (ISDE) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 34 (2016) 012001 doi:10.1088/1755-1315/34/1/012001

3

Given the raster info (𝐼𝐹𝑖
) associated with the output raster, the function raster dataset (𝜙𝑖) is able

to construct the dataset’s domain (𝑍𝑖). Additionally, it is also able to construct the complete set of

transformations necessary to map any geospatial interaction with 𝑍𝑖 to a corresponding interaction

with the native domains associated with each input raster [10]. We then have a fully instantiated

function dataset against with other basic or high-level operations may be performed.

3.2. Applying a raster function template

An alternate approach to building a function dataset (𝜙𝑖) is to bind the set of all expected inputs to a

templatized chain of preexisting functions as described in (5). Here, the application is provided with a

raster function template (𝜏) from which the set of input variables (𝑣𝜏) is constructed. A trivial way to

construct 𝑣𝜏 would be to iterate over all scalar and raster inputs associated with each raster function in

𝜏, and add to 𝑣𝜏 those inputs which aren’t backed by actual scalar or raster objects. In practice,

however, those place-holder inputs have concrete objects that further define properties like default

value, aliases, and display name associated with the variable. These properties enable applications to

meaningfully present users with a request for input.

The particular manner in which template variables bind with the corresponding inputs depends very

much on the context or environment. Desktop applications built using sophisticated graphical

frameworks might allow users to easily select one or more layers from a map, and then present them

with perhaps a carousel of powerful ready-to-use templates that can be easily applied on the input

layers. The subsequent result could then be previewed as another dynamic layer driven by the function

dataset. On the other hand, server-based analytical operation invoked through RESTful calls from a

client-side script might involve transmitting the template as well as values or URLs of all input

parameters in JSON. As objects that can be defined and persisted without referencing actual data

sources, function templates extend the reach and usability of the foundational concept of raster

functions to various raster-based workflows in a GIS.

3.3. Reading pixels of a function dataset

Now consider a function dataset (𝜙𝑖) that came into existence either through the interactive workflow

of adding a function to 𝜙𝑖−1 or through the association of a function template to its argument set

(𝜋𝑖 ∪ 𝜌𝑖). Ultimately, the function dataset (𝜙𝑖) represents a chain of raster functions based on (5)

with the primary purpose of delivering transformed pixels and metadata. Typical application-level

workflows that eventually “pull” data through a function chain might involve a user interactively

roaming a map containing one or more layers driven by a data source containing a function dataset.

Or, the data access may be the consequence of executing an automated script that performs a long-

running analytical operation against a large catalog of imagery in a multi-core or distributed

environment. The raster function framework provides a unified mechanism for requesting pixels from

a dataset.

In the context of data extraction, the spatial domain (𝑍𝑖) and the function dataset (𝜙𝑖), together,

define a virtual output raster (𝑅𝜙𝑖
) from which pixels are read. And because the model in (1) doesn’t

mandate how an application specifically interacts with a concrete instance of a raster, the mid-tier

framework provides applications with mechanisms that enable both sequential and ad hoc access to

pixels in a raster. A request for pixels in any raster (𝑅) is qualified by a set of properties (𝑝) that

defines the location and size of a block of pixels (𝑏𝑅
𝑝

) such that 𝑍𝑏 ⊆ 𝑍𝑅 . For the scenario of a user

roaming a map, 𝑍𝑏 typically represents the current area of interest. Operations that stream a raster in

its entirety can iterate over 𝑍𝑅 using 𝑍𝑏, processing one pixel-block at a time. The software

implementation of this approach has been described in [11].

The raster function model clearly doesn’t preclude itself from the use of parallel threads of

execution to consume data from a single virtual raster. This is possible when the parent dataset

representing the output raster (𝑅𝜙𝑖
) is accessible across threads, or processes, or nodes of a cluster of

machines. Application-level operations can reconstruct the complete output raster that span 𝑍𝑅 by

9th Symposium of the International Society for Digital Earth (ISDE) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 34 (2016) 012001 doi:10.1088/1755-1315/34/1/012001

4

parallelizing the construction of the union, ⋃ 𝑍𝑏𝑖𝑖 . This in turn involves building corresponding pixel

blocks 𝑏𝑅
{𝑝𝑖}

 in parallel. We revisit this line of thought in section 5.2.

3.4. Processing multi-dimensional data

The conceptual model described in the preceding section for processing imagery lends itself to

handling multi-dimensional raster data. For the sake of relevance to a GIS, we’ll consider a data

source or any derivative dataset to be multi-dimensional only if it is defined beyond the three basic

dimensions prevalent in GIS, namely, the two planar spatial dimensions (X and Y), and the one

spectral dimension (band or channel). The presence of a multi-dimensional data source driving a raster

dataset does indeed mandate that the native spatial domain, 𝑍 in (1), describe a gridded hypercube

with 𝑑 > 3.

In our framework, however, the pixel block (𝑏𝑅
𝑝

) from section 3.3 continues to remain planar,

representing a two-dimensional block of multiband pixels. This representation has remained

foundational in GIS where multicriteria decision analysis has been performed through complex

modelling over several planar thematic layers. Access to pixels along the non-trivial dimension is

made possible through the use of properties that identify the location of a planar pixel block in some

high dimensional space. These properties encode a multi-dimensional filter and enable an application

to subset a hypercube or iterate over the discrete hyperplanes parallel to the spatial axes. This slice-

based approach to interacting with a cube integrates with existing GIS implementations that support

planar rasters. Implementations based on this paradigm are going to be scalable and memory efficient

compared to true multi-dimensional rasters where pixel blocks also span non-spatial dimensions or

where 𝐶 ⊆ ℝ𝑑.

4. Methods of analysis

Image processing operations have traditionally been organized by the size of the spatial neighborhood

used for deriving an output pixel value. For the purpose of this article and in the context of a mature

GIS, we find it effective to also categorize raster functions by the cardinality of the set of input rasters

and the dimensionality of those rasters. This serves as an alternative measure of the per-pixel

complexity of an image processing operation.

4.1. Processing a single raster

The simplest class of raster functions under this categorization are those of unit rank—accepting a

single input raster and set of scalar arguments. Trivial examples include functions that perform point

operations on the input raster. The raster functions Contrast and Brightness, Unit Conversion,

Colormap to RGB, Extract Bands, and Apparent Reflectance, used in ArcGIS, and the implementation

of Linear Spectral Unmixing in [12], illustrate the breadth of complexity in spectral and radiometric

transformations performed as point operations. One of the most well-known and widely used spectral

transformations is the normalized difference vegetation index (NDVI) is implemented as a raster

function in [12]. The implementation illustrates the simplicity of a raster function that works on a

single multi-band input raster.

The Hillshade function [12] and its multidirectional variants are examples of neighborhood operations

commonly-used for visualizing rasters that represent elevation. The Segment Mean Shift is a unary

function that performs a spectral transformation as a zonal operation (where the per-pixel complexity

in the spatial domain is not known a priori).

Also, there are raster functions in this category which perform no real processing on the underlying

dataset, instead, choosing to transform non-pixel aspects of the input raster. These functions typically

forward calls from the applications for pixel values to the underlying raster dataset. The Key Metadata

[12], the Statistics and Histogram, and the Attribute Table raster functions modify corresponding

properties associated with the input raster. Another set of raster functions, that are degenerate cases

under this category, require no raster input. In this case, the resulting function dataset emulates a raster

9th Symposium of the International Society for Digital Earth (ISDE) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 34 (2016) 012001 doi:10.1088/1755-1315/34/1/012001

5

dataset by mapping discrete spatial coordinates to color values with possibly some dependency on

scalar input arguments. The Random function in [12] and Constant function in ArcGIS are specimens

of pixel generators. Additionally, a raster function template that has no unresolved variable is an

atypical instance of a degenerate zero-input raster function.

Figure 1 A subset of information products dynamically constructed

from elevation source data (top-left) using raster functions.

4.2. Combining multiple rasters

The n-ary functions in this category construct the output raster by combining two or more single- or

multi-band input rasters. Well-known examples of binary functions in ArcGIS include those that

transform spectral and spatial properties of the input rasters (Pan-sharpening), and those that

transform the color space (Vector Field). The per-pixel complexity of these functions is bounded by

the rank of the function. Additionally, functions in this category which do not aggregate over the

spatial domain expect all input rasters to geospatially overlap. In practice, this might be achieved

through the application of spatially-transforming function chains on each input raster dataset. The

implementations of Heat Index, Wind Chill, and Mask in [12] serve to demonstrate the simplicity of

raster functions that rely on this assumption. The Merge Rasters and Geometric functions specialize in

reconstructing the function dataset’s spatial domain given two or more rasters.

4.3. Aggregating a univariate stack of rasters

In the context of this paper, we refer to a raster that spans one additional non-basic dimension (section

3.4) as a cube, such that 𝑑 = 4 as described in (1). The unary raster functions in this category

specialize in constructing the output raster, with 𝑑 = 3, by aggregating the slices of the cube along

that one dimension. Once again, such functions generally make the same assumptions on the

geospatial locations of those slices, as described in section 4.2. The Aggregate function in [12] is a

basic instance of a raster function in this category which emits summary statistics as the output raster.

One could compute, mean sea-surface temperature or maximum wind-speed, given temporal slices

over those variables. The Composite Band function can be used to transpose a stack of rasters to one

virtual multi-band raster. The ArgStatistics raster function, a generalization of the argmax function,

outputs the index of the slice that corresponds to the specified statistic.

4.4. Processing a multivariate gridded hypercube

A straightforward extension to the preceding categories is the case of an n-ary function with multi-

dimensional input rasters. Here, 𝑛 > 1 as described (3) and two or more input rasters have 𝑑 > 3 as

described in (1). Because the complexity of these functions stem from the cardinality and

dimensionality of the input, these functions continue to build on the assumption of geospatial overlap

we discussed in section 4.2. A basic example would combine the Aggregate and Heat Index functions

described above to output a planar raster that represents average heat index. These functions are

employed in multicriteria decision analysis using multi-dimensional raster data or in multivariate

spatio-temporal clustering.

9th Symposium of the International Society for Digital Earth (ISDE) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 34 (2016) 012001 doi:10.1088/1755-1315/34/1/012001

6

5. Discussion

5.1. Extending Analytical Capabilities

Although the raster function is designed to be a parameterized object that enables customization of

core behavior, a salient feature of the framework implemented in ArcGIS is its extensibility. The

application programming interface (API) defined in [6] allows scientists and image analysts to

implement novel algorithms using the Python programming language and high-performance libraries

like NumPy and SciPy for data manipulation and numerical computation.

5.2. Managing Performance and Scalability

In the context of a concrete instance of a raster function, the speed with which the object completes

any request indirectly affects the responsiveness of the user experience or the overall throughput of a

batch analytic process. Not all methods on the raster function object need equal attention to

optimization, though. The getParameterInfo and updateRasterInfo methods described in [6], for

instance, are only invoked by ArcGIS during the initial construction of the function dataset. The

updatePixels method, however, is the workhorse of the raster function object and gets invoked once

for every pixel block of the output raster over regions requested by the application. Idiomatic Pythonic

techniques and established best practices associated with high-performance scientific computing, like

minimizing data movement, using Cython, and vectorizing calculations, have proven to be effective at

improving performance.

The scalability of any implementation of the conceptual model described in section 2 highly

depends on the system architecture. Most modern geographic information systems, like ArcGIS, are

built with the ability to leverage computational scalability through multiple cores and through

distributed nodes in a cluster of machines. Such systems are able to exploit the parallelized

construction of output function datasets described in section 3.3 especially in the context of batch

analytics of geospatial big data. Recall that this is possible because of the model’s output-centric

nature wherein the application “pulls” data from the top-most function dataset causing pixels to be

pulled up the chain of raster functions, and eventually from all input datasets. Such applications scale

out simply by inducing parallel tiled requests over the spatial domain of the virtual output raster.

Analysts seeking to leverage the map-reduce paradigm to parallelize aggregation of pixels over any

dimension, spatial or non-spatial, need to be aware of relevant properties of the measure being

computed by the raster function in the context of partitioning data along the dimension of aggregation.

As described in [22], distributive measures (like sum, count, or max) that are based on commutative

and associative operations would present minimal challenges during the reduce phase of the operation

where intermediate results from the partitions are being combined. However, solutions that rely on

raster functions that compute algebraic measures (such as average or standard deviation) need to

output the corresponding sufficient statistic (such as sum, count, sum of squares) as intermediate

virtual rasters to aid in the computation of the final measure.

Although parallelization over the output function dataset can be achieved either through replication

or through network-based sharing of all input data, scalability is dramatically improved when all input

rasters come from web-based image services backed by a computer cluster.

5.3. Limitations

Based on the limited scope of this study, the authors direct the readers to [7, 8] for a more

mathematically rigorous treatment of digital image processing constructs. For a more concrete

discussion on analysis of raster data in ArcGIS and for detailed API we refer the reader to [6, 11].

Also, there is more work to be done to extend the utility of raster functions by supporting truly multi-

dimensional pixel blocks such that pixel values span non-spatial dimensions (see section 3.4).

6. Conclusions

We described the mathematical constructs that form the basis of a transformation pipeline for multi-

dimensional rasters in a GIS. An implementation underpinned by the conceptual model of a raster

9th Symposium of the International Society for Digital Earth (ISDE) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 34 (2016) 012001 doi:10.1088/1755-1315/34/1/012001

7

function provides applications with a unified framework for dynamically processing, analyzing, and

visualizing gridded geospatial big data. Among other features, this cross-paradigm unification of how

rasters are transformed is pivotal in extending the state-of-the-art for how scientific investigation is

conducted, how analytical models are created, and how results are disseminated atop modern

geographic information systems.

Well-designed frameworks are able to handle multivariate multi-dimensional rasters even in the

context of prevailing layer-based interactions in a GIS. Systems, like ArcGIS, that have solved the

problem of managing large volumes of rasters and those that are primed for (or already capable of)

distributed batch analytics are set to benefit most from the use of a “function-based” approach for

processing gridded data.

The dynamic nature of raster functions helps elevate the utility of raw data by simplifying and

speeding up dissemination of analytical information products—a sought-after quality in time-critical

areas like disaster response and risk assessment. The gamut of purpose-built raster functions aid in the

application of multicriteria decision analysis like in suitability modelling or urban planning. The

powerful ability to interact with a virtual raster through descriptors that provide ad hoc access to pixels

processed by a chain of functions enables the framework to scale out and leverage high-performance

computing clusters. This scalability helps organizations lower cost and become data-volume-agnostic.

The model is flexible primarily because a composite chain of parameterized functions, persisted to

well-known formats like XML and JSON, then dynamically applied by binding with raster inputs. The

framework’s flexibility and Python-based extensibility allow a scientist or analyst to encode their

algorithm in a reusable package which aids in reproducibility of the resulting information product and

overall transparency of the process.

7. Acknowledgements

We gratefully acknowledge P Becker for numerous insightful comments on this study. We thank K

J Butler and P Mangtani for early comments on this study. We thank R Nalankal, J Zhang, J Drisdelle,

A Jain, K Dhruv, and K Chandnani for their contributions in the development of the raster function

framework in ArcGIS. ArcGIS
®
 is the intellectual property of Esri and is used herein under license.

8. References

[1] H. M. Raafat, Q. Xiao and D. Gauthier, "An extended relational database for remotely sensed image data management

within GIS," Geoscience and Remote Sensing, IEEE Transactions on, vol. 29, no. 4, pp. 651-655, 1991.

[2] A. Das Sarma, H. Lee, H. Gonzalez, J. Madhavan and A. Halevy, "Efficient spatial sampling of large geographical

tables," Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 193-204,

2012.

[3] Z. Yu, S. Zheng and Y. Zhang, "New generation storage model for GIS spatial data based on object-based storage,"

MIPPR 2005 Geospatial Information, Data Mining, and Applications, pp. 60450M-60450M, 2005.

[4] R. F. Tomlinson, Thinking about GIS: geographic information system planning for managers, Redlands: ESRI, Inc.,

2007.

[5] M. F. Goodchild, "Towards an enumeration and classification of GIS functions," Proc. Int. GIS Symposium, 1987.

[6] F. Abdul-Kadar and J. Drisdelle, "ArcGIS Raster Functions - Wiki," 2014. [Online]. Available:

https://github.com/Esri/raster-functions/wiki#raster-functions.

[7] E. L. Fiume, The Mathematical Structure of Raster Graphics, San Diego, CA: Academic Press Professional, Inc., 1989.

[8] M. Sonka, V. Hlavac and R. Boyle, Image processing, analysis, and machine vision, Cengage Learning, 2014.

[9] H. Xu and P. Gao, "Custom Image Processing Capabilities in ArcGIS," in The International Archives of the

Photogrammetry. Remote Sensing and Spatial Information Sciences, Beijing, 2008.

[10] H. Xu, P. Gao and J. Willison, "On-demand Projection of Large Raster Datasets in GIS," Citeseer, Redlands, 2004.

[11] H. Xu, P. Gao and R. Berger, "Developing with ArcGIS Raster APIs," 2009. [Online]. Available:

http://downloads2.esri.com/campus/uploads/library/pdfs/97359.pdf.

[12] F. Abdul-Kadar, "ArcGIS Raster Functions," 2014. [Online]. Available: https://github.com/Esri/raster-functions.

9th Symposium of the International Society for Digital Earth (ISDE) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 34 (2016) 012001 doi:10.1088/1755-1315/34/1/012001

8

