
IOP Conference Series: Earth and
Environmental Science

     

PAPER • OPEN ACCESS

On-the-fly analysis of multi-dimensional rasters in
a GIS
To cite this article: F Abdul-Kadar et al 2016 IOP Conf. Ser.: Earth Environ. Sci. 34 012001

 

View the article online for updates and enhancements.

You may also like
Call and Response: A Time-resolved
Study of Chromospheric Evaporation in a
Large Solar Flare
Sean G. Sellers, Ryan O. Milligan and R.
T. James McAteer

-

Sunspots, Starspots, and Elemental
Abundances
G. A. Doschek and H. P. Warren

-

Probing the Physics of the Solar
Atmosphere with the Multi-slit Solar
Explorer (MUSE). I. Coronal Heating
Bart De Pontieu, Paola Testa, Juan
Martínez-Sykora et al.

-

This content was downloaded from IP address 18.224.63.87 on 23/04/2024 at 15:55

https://doi.org/10.1088/1755-1315/34/1/012001
https://iopscience.iop.org/article/10.3847/1538-4357/ac87a9
https://iopscience.iop.org/article/10.3847/1538-4357/ac87a9
https://iopscience.iop.org/article/10.3847/1538-4357/ac87a9
https://iopscience.iop.org/article/10.3847/1538-4357/aa7bea
https://iopscience.iop.org/article/10.3847/1538-4357/aa7bea
https://iopscience.iop.org/article/10.3847/1538-4357/ac4222
https://iopscience.iop.org/article/10.3847/1538-4357/ac4222
https://iopscience.iop.org/article/10.3847/1538-4357/ac4222
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstkDQRbpXAllsjHEiYlgMA51F1TBm6kNTUEcYNBSdQL6cdm1CofwmQ_BpT3sgYChXXR1pqzQOWXOukciyIjoIUE5Vjvl0p9ZlI0hT6ZrxKq_yN1g3bxetfUROV5jfXIIu-skxaOpyc8-4ySQwjYkRYlwnP_zERE0SsuW22H8fak0lzoW4Va7yKzQH4cEZ9yHgM8QNWf_YEwMooaAwVwRis7Wp5Je4e6sVJ9pvzD1jFJi-ZGg02I9jqxFsxnhzp8xNDEZ27s5iWxSAhGBLnodY4nmrn-z7M2b68csoPBplAvWpRWK1wQyCpGXbA3WlGWIOdJqJVDfgPMZOzY-HM2J58&sig=Cg0ArKJSzI_JmkKYjzW4&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


 

On-the-fly analysis of multi-dimensional rasters in a GIS 

F Abdul-Kadar
1
, H Xu

1
 and P Gao

1 

1Environmental Systems Research Institute (Esri), Redlands, CA, USA 

 

Email: akferoz@esri.com 

 

Abstract. Geographic Information Systems and other mapping applications that specialize in image 

analysis routinely process high-dimensional gridded rasters as multivariate data cubes. Frameworks 

responsible for processing image data within these applications suffer from a combination of key 

shortcomings: inefficiencies stemming from intermediate results being stored on disk, the lack of 

versatility from disparate tools that don’t work in unison, or the poor scalability with increasing volume 

and dimensionality of the data.  We present raster functions as a powerful mechanism for processing and 

analyzing multi-dimensional rasters designed to overcome these crippling issues.  A raster function 

accepts multivariate hypercubes and processing parameters as input and produces one output raster. 

Function chains and their parameterized form, function templates, represent a complex image processing 

operation constructed by composing simpler raster functions. We discuss extensibility of the framework 

via Python, portability of templates via XML, and dynamic filtering of data cubes using SQL. This paper 

highlights how ArcGIS employs raster functions in its mission to build actionable information from 

science and geographic data—by shrinking the lag between the acquisition of raw multi-dimensional 

raster data and the ultimate dissemination of derived image products. ArcGIS has a mature raster I/O 

pipeline based on GDAL, and it manages gridded multivariate multi-dimensional cubes in mosaic 

datasets stored within a geodatabase atop an RDBMS. Bundled with raster functions, we show those 

capabilities make possible up-to-date maps that are driven by distributed geoanalytics and powerful 

visualizations against large volumes of near real-time gridded data.  

 

1. Introduction 

Over the past three decades, the geographic information science community has been working hard 

towards solving the problem of efficiently managing and disseminating very large volumes of 

remotely sensed data, and making it available to an end user in a responsive environment, see [1, 2]. 

The past decade has experienced an explosion in the amount of remotely sensed earth observation data 

produced by organizations and government agencies around the world. The corresponding availability 

of mature GIS applications that are capable of handling the growing volume and variety of gridded 

data indicates that those earlier efforts have paid off well, see for instance, [3]. Contemporary systems 

are multi-tiered and distributed with well-established pipelines for efficiently streaming large volumes 

of data from the storage systems, NAS, SAN or object store [3], up through the software stack, over 

the web, and to the consumer’s device.  

The challenge, in this era, is to continually deliver value despite the growth along the dimensions of 

volume and variety. Organizations have long expended time and energy on transforming data to 

produce information which provide insights, enhance knowledge, and aid in decision-making. A GIS 

facilitates value addition through the efficient construction and timely dissemination of well-designed 

information products [4]. A data-derived product enables people to intuitively visualize complex 

phenomena or serves as an input data source in another transformation. However, traditional 

paradigms of workstation-based batch processing break down in the face of “big data.” Systems which 

rely exclusively on closed frameworks that do not scale out well are unable to deliver information-

based value effectively. The earth science community is in need of a unifying model that underpins a 
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scalable and extensible framework to drive distributed processing, desktop and cloud-based analysis, 

and responsive visualization of very large volumes of multivariate, multi-dimensional gridded data 

within a modern GIS.  

We define one such model, called raster functions, for the dynamic transformation of rasters. The 

constructs described in this article, enable scientists and image analysts to codify, persist, and 

disseminate complex parameterized chains of transformations that are constructed using simple 

building blocks. These function chains represent an image processing or analytical model which can 

be applied seamlessly across the various modalities of interacting with rasters, from desktop 

workflows with a single dataset to cloud-based analytics against a catalog of tens of millions of 

rasters. The raster function framework drives the visualization and analytical engine within a GIS and 

enhances the system with the ability to dynamically construct a wide array of information products 

from raw data. The flexibility and portability of raster functions ensure that the lightweight 

transformations that define the final product, not the bulky input data sets, are transported around the 

system. Raster functions aid in modular development of functionality within a GIS, as described in [5]. 

Unlike systems that rely on a fixed set of operations, the corpus of raster functions is easily expanded 

through the use of a Python API.  

In this article, we first present the basic mathematical constructs and the conceptual model for 

transforming rasters in the context of a GIS. We then describe the expectations and interactions 

between a typical application and a framework derived from that model. In this paper, the 

programming interface is described solely in abstract terms within the context of key high-level 

interactions with the framework. A more concrete programming interface of the raster function 

framework within ArcGIS is described in [6]. We also use instances of raster functions implemented 

within ArcGIS to elucidate an alternative measure of complexity of raster-based operations. We 

discuss the applicability of raster functions under non-traditional paradigms of data processing and 

analytics within a GIS.  

2. Definitions and model 

In this section, we revisit and extend the mathematical definition of fundamental image processing 

concepts. We then derive the conceptual models that embody those definitions. In an intuitive sense, 

we can describe a raster as a mapping of each point in a two-dimensional space to a color value. 

Building on the notations defined in [7] and [8], given a discrete subspace 𝑍 and a color-space 𝐶, a 

raster can be defined as:  

𝑅 ∶ 𝑍 → 𝐶,   where 𝑍 ⊆ ℝ𝑑  and C ⊆ ℝ (1) 

Here, 𝑍 is the domain over which the raster 𝑅 is defined. Additionally, 𝑍 encapsulates all spatial 

and spectral aspects of a raster along each dimension such as the coordinate system, the resolution of 

the underlying graticule or grid, the extent, and the number of bands. 𝐶 is the range of the raster 𝑅, and 

it encapsulates all the familiar radiometric properties of a raster such color-space, the bit depth or data 

type used for representing the output pixel value, and the set of valid and NoData pixel values. As an 

object, 𝑅 incorporates key properties typically presented as metadata associated with the raster along 

with, basically, any parameter that serves to further constrain or describe the domain or range 

associated with the raster.  

Next, we define a raster dataset as a non-transient object comprising a default instance of a raster 

and the associated extents. Here, we define it along the lines of a static object from [7] as a tuple:   

𝛿 ≜ (𝑅𝛿 , 𝑍𝛿) (2) 

In practice, a raster dataset is typically a format-agnostic representation of an image file stored on 

disk or in a database [9]. Such an object is capable of handling transformations between the spatial 

domain of the dataset, 𝑍𝛿, and the spatial domain native to the raster 𝑅𝛿. As eluded by [10], the raster 

dataset could, for instance, encapsulate the camera model of a remotely sensed image to transform 

coordinates from map space, through camera space, to image space. An application also relies on the 

dataset object for all higher-level interactions such as accessing or modifying parameters that control 
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metadata, projections and transformations, persistence, etc. Use of the underlying raster is reserved 

primarily for reading and writing pixel values.  

Now, a raster function is a mapping of a tuple of one or more rasters to another raster:  

𝐹𝜋: 𝑅𝑛 → 𝑅 (3) 

Here, 𝑛 ∈ ℕ≥0, is the rank of a raster function, and 𝜋 is the set of scalar parameters that further 

qualifies an instance of 𝐹. Simply put, a raster function is a parameterized operation capable of 

producing one output raster given zero or more input rasters. Conceptually, a function dataset extends 

a raster dataset using an instance of a function and an instance of the associated argument set.  

It represents a dynamically processed raster, and can be described as a tuple: 

𝜙 ≜ (𝐹, 𝜋, 𝑅𝑛, 𝑍)  (4) 

Here, 𝑛 is the rank of 𝐹, and 𝑅𝑛 represents the n-tuple of rasters derived from various inputs to the 

function dataset. Given that a function dataset extends the definition of a raster dataset, and these 

datasets can conceptually be treated as rasters, we can rewrite (4) like this:   

𝜙𝑖 = (𝐹𝑖, 𝜋𝑖, 𝜌𝑖, 𝑍𝑖),  

where 𝜌𝑖 ⊆ {𝜙<𝑖} ∪ {𝛿𝑘: 𝑘 ∈ 𝑁}, and |𝜌𝑖| = 𝑛  

(5) 

Here, 𝜌𝑖 represents the subset (of cardinality, 𝑛) containing all input rasters for the 𝑖𝑡ℎ function 

dataset constructed using all (𝑁) raster datasets and using previously encountered function datasets 

(𝜙<𝑖). A composition based on the above recurrence relation is called a raster function chain and 

typically serves to encode a multivariate model for raster-based analysis or processing. 

A raster function template is an instance of a raster function chain where one or more elements of 

𝜋𝑖 or 𝜌𝑖, for some value of 𝑖, represent a place-holder variable and not an actual instance of the scalar 

or raster object. Well-crafted raster function templates make analytical models reusable across a GIS.  

We discuss interactions using more concrete examples in the next section.   

3. Anatomy and interactions 

An implementation of a raster function needs to conform to a predefined application programming 

interface (API) to enable effective interactions with other components in the GIS, primarily, the parent 

function dataset, on aspects associated with pixel data, mask, metadata, and core properties of the 

input and output rasters. In this section, we discuss a few key workflows that will allow us to elaborate 

on the ensuing interactions between the application and the raster function framework.  

3.1. Adding a raster function 

Consider the use case of constructing a function dataset, 𝜙𝑖as described in (5), for the simplified 

scenario where we have one input raster (𝛿𝑘) or another function dataset (𝜙𝑖−1). Basically, we extend 

a function chain by one new function: 𝐹𝑖. This interactive workflow primarily entails a user choosing 

from the collection of available raster functions, populating scalar values, and attaching datasets 

associated with the function arguments, 𝜋𝑖 and 𝜌𝑖. Assuming the application maintains a set of 

references to functions that are available to the user, we would need every raster function to be able to 

describe each expected input parameter. 

Once the advertised scalar and raster arguments are provided by the user, the application vets and 

then loads objects associated with the inputs, and delivers them to the raster function. The function 

(𝐹𝑖) then provides the application with the raster info object (𝐼𝐹𝑖
) associated with the output raster. 

Raster info is a framework-level construct that encapsulates core properties associated with a concrete 

representation of the raster concept described under (1) in the preceding section. As an object, it 

describes the resolution and boundary of the native geospatial (or spatio-temporal, or multi-

dimensional) grid over which the corresponding raster is defined. It also describes the radiometric and 

spectral properties such as the data type of the pixel, number of bands, the wavelengths associated 

with each band, and the distribution of pixel values in the raster.  
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Given the raster info (𝐼𝐹𝑖
) associated with the output raster, the function raster dataset (𝜙𝑖) is able 

to construct the dataset’s domain (𝑍𝑖). Additionally, it is also able to construct the complete set of 

transformations necessary to map any geospatial interaction with 𝑍𝑖 to a corresponding interaction 

with the native domains associated with each input raster [10]. We then have a fully instantiated 

function dataset against with other basic or high-level operations may be performed. 

3.2. Applying a raster function template 

An alternate approach to building a function dataset (𝜙𝑖) is to bind the set of all expected inputs to a 

templatized chain of preexisting functions as described in (5). Here, the application is provided with a 

raster function template (𝜏) from which the set of input variables (𝑣𝜏) is constructed. A trivial way to 

construct 𝑣𝜏 would be to iterate over all scalar and raster inputs associated with each raster function in 

𝜏, and add to 𝑣𝜏 those inputs which aren’t backed by actual scalar or raster objects. In practice, 

however, those place-holder inputs have concrete objects that further define properties like default 

value, aliases, and display name associated with the variable. These properties enable applications to 

meaningfully present users with a request for input.  

The particular manner in which template variables bind with the corresponding inputs depends very 

much on the context or environment. Desktop applications built using sophisticated graphical 

frameworks might allow users to easily select one or more layers from a map, and then present them 

with perhaps a carousel of powerful ready-to-use templates that can be easily applied on the input 

layers. The subsequent result could then be previewed as another dynamic layer driven by the function 

dataset. On the other hand, server-based analytical operation invoked through RESTful calls from a 

client-side script might involve transmitting the template as well as values or URLs of all input 

parameters in JSON. As objects that can be defined and persisted without referencing actual data 

sources, function templates extend the reach and usability of the foundational concept of raster 

functions to various raster-based workflows in a GIS. 

3.3. Reading pixels of a function dataset 

Now consider a function dataset (𝜙𝑖) that came into existence either through the interactive workflow 

of adding a function to 𝜙𝑖−1 or through the association of a function template to its argument set 

(𝜋𝑖 ∪ 𝜌𝑖). Ultimately, the function dataset (𝜙𝑖) represents a chain of raster functions based on (5) 

with the primary purpose of delivering transformed pixels and metadata. Typical application-level 

workflows that eventually “pull” data through a function chain might involve a user interactively 

roaming a map containing one or more layers driven by a data source containing a function dataset. 

Or, the data access may be the consequence of executing an automated script that performs a long-

running analytical operation against a large catalog of imagery in a multi-core or distributed 

environment. The raster function framework provides a unified mechanism for requesting pixels from 

a dataset. 

In the context of data extraction, the spatial domain (𝑍𝑖) and the function dataset (𝜙𝑖), together, 

define a virtual output raster (𝑅𝜙𝑖
) from which pixels are read. And because the model in (1) doesn’t 

mandate how an application specifically interacts with a concrete instance of a raster, the mid-tier 

framework provides applications with mechanisms that enable both sequential and ad hoc access to 

pixels in a raster.  A request for pixels in any raster (𝑅) is qualified by a set of properties (𝑝) that 

defines the location and size of a block of pixels (𝑏𝑅
𝑝

) such that 𝑍𝑏 ⊆ 𝑍𝑅 . For the scenario of a user 

roaming a map, 𝑍𝑏 typically represents the current area of interest. Operations that stream a raster in 

its entirety can iterate over 𝑍𝑅 using 𝑍𝑏, processing one pixel-block at a time. The software 

implementation of this approach has been described in [11]. 

The raster function model clearly doesn’t preclude itself from the use of parallel threads of 

execution to consume data from a single virtual raster. This is possible when the parent dataset 

representing the output raster (𝑅𝜙𝑖
) is accessible across threads, or processes, or nodes of a cluster of 

machines. Application-level operations can reconstruct the complete output raster that span 𝑍𝑅 by 
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parallelizing the construction of the union, ⋃ 𝑍𝑏𝑖𝑖 . This in turn involves building corresponding pixel 

blocks 𝑏𝑅
{𝑝𝑖}

 in parallel. We revisit this line of thought in section 5.2.   

3.4. Processing multi-dimensional data 

The conceptual model described in the preceding section for processing imagery lends itself to 

handling multi-dimensional raster data. For the sake of relevance to a GIS, we’ll consider a data 

source or any derivative dataset to be multi-dimensional only if it is defined beyond the three basic 

dimensions prevalent in GIS, namely, the two planar spatial dimensions (X and Y), and the one 

spectral dimension (band or channel). The presence of a multi-dimensional data source driving a raster 

dataset does indeed mandate that the native spatial domain, 𝑍 in (1), describe a gridded hypercube 

with 𝑑 > 3.  

In our framework, however, the pixel block (𝑏𝑅
𝑝

) from section 3.3 continues to remain planar, 

representing a two-dimensional block of multiband pixels. This representation has remained 

foundational in GIS where multicriteria decision analysis has been performed through complex 

modelling over several planar thematic layers. Access to pixels along the non-trivial dimension is 

made possible through the use of properties that identify the location of a planar pixel block in some 

high dimensional space. These properties encode a multi-dimensional filter and enable an application 

to subset a hypercube or iterate over the discrete hyperplanes parallel to the spatial axes. This slice-

based approach to interacting with a cube integrates with existing GIS implementations that support 

planar rasters. Implementations based on this paradigm are going to be scalable and memory efficient 

compared to true multi-dimensional rasters where pixel blocks also span non-spatial dimensions or 

where 𝐶 ⊆  ℝ𝑑.  

4. Methods of analysis 

Image processing operations have traditionally been organized by the size of the spatial neighborhood 

used for deriving an output pixel value. For the purpose of this article and in the context of a mature 

GIS, we find it effective to also categorize raster functions by the cardinality of the set of input rasters 

and the dimensionality of those rasters. This serves as an alternative measure of the per-pixel 

complexity of an image processing operation.  

4.1. Processing a single raster 

The simplest class of raster functions under this categorization are those of unit rank—accepting a 

single input raster and set of scalar arguments. Trivial examples include functions that perform point 

operations on the input raster. The raster functions Contrast and Brightness, Unit Conversion, 

Colormap to RGB, Extract Bands, and Apparent Reflectance, used in ArcGIS, and the implementation 

of Linear Spectral Unmixing in [12], illustrate the breadth of complexity in spectral and radiometric 

transformations performed as point operations. One of the most well-known and widely used spectral 

transformations is the normalized difference vegetation index (NDVI) is implemented as a raster 

function in [12]. The implementation illustrates the simplicity of a raster function that works on a 

single multi-band input raster.  

The Hillshade function [12] and its multidirectional variants are examples of neighborhood operations 

commonly-used for visualizing rasters that represent elevation. The Segment Mean Shift is a unary 

function that performs a spectral transformation as a zonal operation (where the per-pixel complexity 

in the spatial domain is not known a priori).  

Also, there are raster functions in this category which perform no real processing on the underlying 

dataset, instead, choosing to transform non-pixel aspects of the input raster. These functions typically 

forward calls from the applications for pixel values to the underlying raster dataset. The Key Metadata 

[12], the Statistics and Histogram, and the Attribute Table raster functions modify corresponding 

properties associated with the input raster. Another set of raster functions, that are degenerate cases 

under this category, require no raster input. In this case, the resulting function dataset emulates a raster 
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dataset by mapping discrete spatial coordinates to color values with possibly some dependency on 

scalar input arguments. The Random function in [12] and Constant function in ArcGIS are specimens 

of pixel generators. Additionally, a raster function template that has no unresolved variable is an 

atypical instance of a degenerate zero-input raster function. 

 

 
Figure 1 A subset of information products dynamically constructed 

from elevation source data (top-left) using raster functions.  

4.2. Combining multiple rasters 

The n-ary functions in this category construct the output raster by combining two or more single- or 

multi-band input rasters. Well-known examples of binary functions in ArcGIS include those that 

transform spectral and spatial properties of the input rasters (Pan-sharpening), and those that 

transform the color space (Vector Field). The per-pixel complexity of these functions is bounded by 

the rank of the function. Additionally, functions in this category which do not aggregate over the 

spatial domain expect all input rasters to geospatially overlap. In practice, this might be achieved 

through the application of spatially-transforming function chains on each input raster dataset. The 

implementations of Heat Index, Wind Chill, and Mask in [12] serve to demonstrate the simplicity of 

raster functions that rely on this assumption. The Merge Rasters and Geometric functions specialize in 

reconstructing the function dataset’s spatial domain given two or more rasters.  

4.3. Aggregating a univariate stack of rasters 

In the context of this paper, we refer to a raster that spans one additional non-basic dimension (section 

3.4) as a cube, such that 𝑑 = 4 as described in (1). The unary raster functions in this category 

specialize in constructing the output raster, with 𝑑 = 3, by aggregating the slices of the cube along 

that one dimension. Once again, such functions generally make the same assumptions on the 

geospatial locations of those slices, as described in section 4.2. The Aggregate function in [12] is a 

basic instance of a raster function in this category which emits summary statistics as the output raster. 

One could compute, mean sea-surface temperature or maximum wind-speed, given temporal slices 

over those variables. The Composite Band function can be used to transpose a stack of rasters to one 

virtual multi-band raster. The ArgStatistics raster function, a generalization of the argmax function, 

outputs the index of the slice that corresponds to the specified statistic.  

4.4. Processing a multivariate gridded hypercube 

A straightforward extension to the preceding categories is the case of an n-ary function with multi-

dimensional input rasters. Here, 𝑛 > 1 as described (3) and two or more input rasters have 𝑑 > 3 as 

described in (1). Because the complexity of these functions stem from the cardinality and 

dimensionality of the input, these functions continue to build on the assumption of geospatial overlap 

we discussed in section 4.2. A basic example would combine the Aggregate and Heat Index functions 

described above to output a planar raster that represents average heat index. These functions are 

employed in multicriteria decision analysis using multi-dimensional raster data or in multivariate 

spatio-temporal clustering.  
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5. Discussion 

5.1. Extending Analytical Capabilities 

Although the raster function is designed to be a parameterized object that enables customization of 

core behavior, a salient feature of the framework implemented in ArcGIS is its extensibility. The 

application programming interface (API) defined in [6] allows scientists and image analysts to 

implement novel algorithms using the Python programming language and high-performance libraries 

like NumPy and SciPy for data manipulation and numerical computation.   

5.2. Managing Performance and Scalability 

In the context of a concrete instance of a raster function, the speed with which the object completes 

any request indirectly affects the responsiveness of the user experience or the overall throughput of a 

batch analytic process. Not all methods on the raster function object need equal attention to 

optimization, though. The getParameterInfo and updateRasterInfo methods described in [6], for 

instance, are only invoked by ArcGIS during the initial construction of the function dataset. The 

updatePixels method, however, is the workhorse of the raster function object and gets invoked once 

for every pixel block of the output raster over regions requested by the application. Idiomatic Pythonic 

techniques and established best practices associated with high-performance scientific computing, like 

minimizing data movement, using Cython, and vectorizing calculations, have proven to be effective at 

improving performance. 

The scalability of any implementation of the conceptual model described in section 2 highly 

depends on the system architecture. Most modern geographic information systems, like ArcGIS, are 

built with the ability to leverage computational scalability through multiple cores and through 

distributed nodes in a cluster of machines. Such systems are able to exploit the parallelized 

construction of output function datasets described in section 3.3 especially in the context of batch 

analytics of geospatial big data. Recall that this is possible because of the model’s output-centric 

nature wherein the application “pulls” data from the top-most function dataset causing pixels to be 

pulled up the chain of raster functions, and eventually from all input datasets. Such applications scale 

out simply by inducing parallel tiled requests over the spatial domain of the virtual output raster.  

Analysts seeking to leverage the map-reduce paradigm to parallelize aggregation of pixels over any 

dimension, spatial or non-spatial, need to be aware of relevant properties of the measure being 

computed by the raster function in the context of partitioning data along the dimension of aggregation. 

As described in [22], distributive measures (like sum, count, or max) that are based on commutative 

and associative operations would present minimal challenges during the reduce phase of the operation 

where intermediate results from the partitions are being combined. However, solutions that rely on 

raster functions that compute algebraic measures (such as average or standard deviation) need to 

output the corresponding sufficient statistic (such as sum, count, sum of squares) as intermediate 

virtual rasters to aid in the computation of the final measure.  

Although parallelization over the output function dataset can be achieved either through replication 

or through network-based sharing of all input data, scalability is dramatically improved when all input 

rasters come from web-based image services backed by a computer cluster. 

5.3. Limitations 

Based on the limited scope of this study, the authors direct the readers to [7, 8] for a more 

mathematically rigorous treatment of digital image processing constructs. For a more concrete 

discussion on analysis of raster data in ArcGIS and for detailed API we refer the reader to [6, 11]. 

Also, there is more work to be done to extend the utility of raster functions by supporting truly multi-

dimensional pixel blocks such that pixel values span non-spatial dimensions (see section 3.4). 

6. Conclusions 

We described the mathematical constructs that form the basis of a transformation pipeline for multi-

dimensional rasters in a GIS. An implementation underpinned by the conceptual model of a raster 
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function provides applications with a unified framework for dynamically processing, analyzing, and 

visualizing gridded geospatial big data. Among other features, this cross-paradigm unification of how 

rasters are transformed is pivotal in extending the state-of-the-art for how scientific investigation is 

conducted, how analytical models are created, and how results are disseminated atop modern 

geographic information systems. 

Well-designed frameworks are able to handle multivariate multi-dimensional rasters even in the 

context of prevailing layer-based interactions in a GIS. Systems, like ArcGIS, that have solved the 

problem of managing large volumes of rasters and those that are primed for (or already capable of) 

distributed batch analytics are set to benefit most from the use of a “function-based” approach for 

processing gridded data. 

The dynamic nature of raster functions helps elevate the utility of raw data by simplifying and 

speeding up dissemination of analytical information products—a sought-after quality in time-critical 

areas like disaster response and risk assessment. The gamut of purpose-built raster functions aid in the 

application of multicriteria decision analysis like in suitability modelling or urban planning.  The 

powerful ability to interact with a virtual raster through descriptors that provide ad hoc access to pixels 

processed by a chain of functions enables the framework to scale out and leverage high-performance 

computing clusters. This scalability helps organizations lower cost and become data-volume-agnostic.  

The model is flexible primarily because a composite chain of parameterized functions, persisted to 

well-known formats like XML and JSON, then dynamically applied by binding with raster inputs. The 

framework’s flexibility and Python-based extensibility allow a scientist or analyst to encode their 

algorithm in a reusable package which aids in reproducibility of the resulting information product and 

overall transparency of the process. 
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