Landmark Analysis Of Leaf Shape Using Polygonal Approximation

To cite this article: Zakhi Firmansyah et al 2016 IOP Conf. Ser.: Earth Environ. Sci. 31 012018

View the article online for updates and enhancements.

Related content
- Comparison of different QA methods for deformable image registration to the known errors for prostate and head-and-neck virtual phantoms
 M Obeidat, G Narayanasamy, K Cline et al.
- Analysis of reproducibility using anatomical landmarks
 Etsuo Kunieda, Yohei Oku, Junichi Fukada et al.
- Leaf growth is conformal
 Karen Alim, Shahaf Armon, Boris I Shraiman et al.
Landmark Analysis Of Leaf Shape Using Polygonal Approximation

Zakhi Firmansyah1, Yeni Herdiyeni1, Bib Paruhum Silalahi2, Stephane Douady3
1Department of Computer Science, Faculty of Mathematics and Natural Sciences. Bogor Agricultural University, West Java Indonesia
2Department of Mathematic, Faculty of Mathematics and Natural Sciences. Bogor Agricultural University, West Java Indonesia
3Laboratoire: Matiere et System Complex, Université Paris Diderot, France

E-mail: zakhi99@gmail.com, yeni.herdiyeni@ipb.ac.id, bibparuhum@gmail.com

Abstract. This research proposes a method to extract landmark of leaf shape using static threshold of polygonal approximation. Leaf shape analysis has played a central role in many problems in vision and perception. Landmark-based shape analysis is the core of geometric morphometric and has been used as a quantitative tool in evolutionary and developmental biology. In this research, the polygonal approximation is used to select the best points that can represent the leaf shape variability. We used a static threshold as the control parameter of fitting a series of line segment over a digital curve of leaf shape. This research focuses on seven leaf shape, i.e., eliptic, obovate, ovate, oblong and special. Experimental results show static polygonal approximation shows can be used to find the important points of leaf shape.

1. Introduction
Botanist observe various features in plants using taxonomic key to identify the species of a plant. One feature that is observed to determine the species of plants are leaf shape. Each class has a unique shape. In addition, the general class of leaf shape is also determined by the ratio of length to width leaf and the widest position of the leaf. Previous research related to plant identification such as Gwo et al. (2013) use key point along leaf boundary, centroid dan fuzzy histogram to representation leaf shape. There are so many works related shape identification using landmark analysis. Takemura et al. (2002) introduces a new shape analysis approach using the well known wavelet transform and exploring fish shape representation by landmarks. In this paper, a new method using static polygonal approximation to analyze landmark of leaf shape is proposed.

1.1. Landmark
Landmark is a biologically definable point on an organism, that can be sensibly compared between related organisms. It typically requires domain-specific expert knowledge to choose a suitable set of landmarks.
Landmark-based shape analysis has been the core of morphometrics geometry and has been used as a quantitative tool in evolutionary and developmental biology (Klingenberg, 2010). However, it exhibits three main fundamental limitations (Laga 2014):

First, it assumes that the landmarks are already in correspondence across shapes. Shapes of plant leaves, however, exhibit large non-rigid variations, even within a single species. This makes finding the correspondences across shapes even more challenging.

Second, landmark-based methods are not invariant to all the shape-preserving transformations. They can be made, in a preprocessing step, invariant to translation, scale and rotation of the shapes. However, they are not invariant to there- parameterization of the shapes.

Finally, landmark-based methods assume that the shapes to be analyzed are points in a high-dimensional Euclidean space and are distributed following a Gaussian model. This limits the type of statistical analysis that can be performed to Gaussian distribution only.

1.2. Leaf Shape

Leaf shape is one of the most important features in describing the plant. Humans can easily identify the different types of leaves and classify them into different species based on information found on the leaves. Based on the shape, the leaves are grouped into 16 classes (Harlow dan Harrar, 1969). There are classes to distinguish the width and length ratio and their unique shape. Fig. 1 shows the 16 classes of shape i.e. there are: (1) Accicular, (2) Scalelike, (3) Linear, (4) Oblong, (5) Lanceolate, (6) Oblanceolate (7) Ovate, (8) Obovate, (9) Elliptical, (10) Oval, (11) Orbicular, (12) Reniform, (13) Cordate, (14) Deltoid, (15) Rhomboid, (16) Spatulate. Each class has a characteristic shape of leaves typical.

Fig. 1. Leaf Shapes Of Harlow and Harrar.
1.3. Laminar shape

The simplest way to describe the overall shape of the lamina is to locate the axis or, in some cases, the zone of greatest width that lies perpendicular to the axis of greatest length or long axis (Wing et al. 1999):

a. **Elliptic**

 The widest part of the leaf is on an axis in the middle of the long axis of the leaf.

 ![Fig. 2. Elliptic](image)

b. **Obovate**

 Widest part of the leaf is on an axis in the apical 2/5 of the leaf

 ![Fig. 3. Obovate](image)

c. **Ovate**

 Widest part of the leaf is on an axis in the basal 2/5 of the leaf

 ![Fig. 4. Ovate](image)

d. **Oblong**

 Widest part of the leaf is a zone in the middle 1/3 of the long axis where the opposite margins are roughly parallel.

 ![Fig. 5. Oblong](image)
2. Methods

2.1. Polygonal Approximation

Polygonal Approximation is a simplification of the method of representation form the curve (Prasad et al. 2012). For example, the set \{P_1, P_2, P_3, ..., P_n\} as shown in Figure 6, is a series of dots representing a sequential digital curve, then given treatment so that the set of points is reduced to \{Q_1, Q_2, Q_3, ..., Q_m\} with \(m < n \)

![Figure 6. Polygonal Approximation](image)

There are two main ways to reduce the polygonal approximation point (Grigore O et al. 2003):

- **Min – \(\varepsilon \):** is the approach to determine the number of points so that predictions can represent essentially the shape of the curve as shown in Figure 7.

![Figure 7. Min - \(\varepsilon \) Polygonal Approximation](image)

- **Min - #:** is an approach that determines the margin of error which is a deviation limits in representing the final results as shown in Figure 8.

![Figure 8. Min - # Polygonal Approximation](image)

Prasad et al. (2012) optimize the polygonal approximation of digital curves that had previously been done by Lowe (1987), Ramer (1972), Douglas & Peucker (1973) or L-RDP, digital curve \(e = \{P_1, P_2, ..., P_n\} \), with \(P_i \) is \(i \) the number of points the edge of the pixel in the digital curve \(e \). Line through a pair of pixels \(P_a (x_a, y_a) \) and \(P_b (x_b, y_b) \) is given by Equation 1.

\[
x(y_a - y_b) + y(x_a - x_b) + y_b x_a - y_a x_b = 0
\]

(1)

and deviation \(d_i \) of the pixels \(P_i (x_i, y_i) \) of the line passing through the pair \(\{P_1, P_n\} \) is given by Equation 2.
\[
d_i = |x_i(y_{1N} - y_N) + y_i(x_N - x_1) + y_Nx_1 - x_Ny_i|
\] \hspace{1cm} (2)

From the level difference \(d_i\) can be seen how far the deviations that occur, as shown in Figure 9.

Figure 9. The degree of difference \(d_i\)

Based on the above picture, \(d_i\) is the degree of difference of \(P_2\) against the pair of points \(P_1\) and \(P_4\), and \(d_4\) have the biggest difference level. By this means that the greater the degree of similarity between the \(d_i\) the digital curve and the results are becoming increasingly different polygonal approximation.

Thus, pixels with a maximum deviation can be found, denoted by \(P_{max}\), then given the pair \(\{P_1, P_{max}\}\) and \(\{P_{max}, P_N\}\), so we get two new pixels of the curve \(E\) using Equation 1 and 2 above. This process is repeated until certain conditions are met by all segments of the line.

The conditions used by L-RDP [Douglas & Peucker (1973), Lowe (1987), Ramer (1972)] is that for each line segment, the maximum deviation of pixels contained in the corresponding edge segment is less than a certain tolerance value as Equation 3 below.

\[
\max(d_i) < d_{tol}
\] \hspace{1cm} (3)

With \(d_{tol}\) is the threshold or margin selected. As shown in Figure 10.

Figure 10. Illustration \(d_{tol}\) on Polygonal Approximation
3. Results and discussions

In this paper used image dataset from Machine Learning Repository UCI [21]. The Leaves were collected in the Royal Botanic Gardens, Kew, UK. All there are 100 species of leaf and every species there are 16 image data of a binary image. In this paper have been classified some image data according to Benson leaf shape. There are five leaf shape that can be analyzed is Eliptic, obovate, ovate, oblong and special

3.1. Static Threshold Polygonal Approximation in Leaf Shape

We know that edge shape of leaf consists of successive points. That meant the points can choose the best points which could indicate landmarks of leaf shape (Fig. 11). Static value $d_{tot} 0.5, 1.0, 1.5$, and 2.0 Polygonal Approximation is used in this research

![Static Threshold Polygonal Approximation](image)

Figure 11. Sample Leaf shape with static value $d_{tot} 2.0$

3.2. Eliptic Shape Analysis

Eliptic is the shape of the leaves that have the widest part at the center of the leaf. Elliptical leaves have the broadest width in the middle and then taper off at the ends. As we see in the Fig. 12 a and b, the elliptic shape is determine in point 4, 5, 6 which have more point in the middle of the leaf for threshold 2.0.

In point 1, 2, 3 respectively be formed as the base of the leaf shape and 7, 8 be formed as the apex of the leaf shape which have less broader than the middle.

![Eliptic Shape Analysis](image)

Figure 12. Eliptic Shape Analysis

3.3. Obovate Shape Analysis

Obovate is the shape of the leaves that have the widest part of the leaf is on an axis in the apical 2/5 of the leaf. As we see in the Fig. 13 a and b is two species from obovate shape, the obovate shape is determine in point 7, 8, 9, 10, 11 which have more point in the apex of the leaf for threshold 1.0.

In point 1, 2, 3 respectively be formed as the base of the leaf shape and 4, 5, 6 be formed as the middle of the leaf shape which have less broader than the apex.

![Obovate Shape Analysis](image)
3.4. **Ovate Shape Analysis**

Ovate is the shape of the leaves that have widest part of the leaf is on an axis in the basal 2/5 of the leaf. As we see in the Fig. 14 a and b is two species from ovate shape. the ovate shape is determine in point 1, 2, 3, 4 which have more point in the basal of the leaf for threshold 2.0.

In point 5, 6 and 7 respectively be formed as the middle of the leaf shape and 8, 9 be formed as the apex of the leaf shape which have less broader than the middle.

![Figure 14. Ovate Shape Analysis](image)

3.5. **Oblong Shape Analysis**

Oblong is the shape of the leaves that have the widest part of the leaf is a zone in the middle 1/3 of the long axis where the opposite margins are roughly parallel. As we see in the Fig. 15 a and b, the oblong shape is determine in point 3, 4 and 5, 6 which have more point in the middle of the leaf and roughly parallel for threshold 1.5.

In point 1, 2 respectively be formed as the apex of the leaf shape and 7, 8 be formed as the base of the leaf shape which have less broader than the middle 1/3 of the long axis.

![Figure 15. Oblong Shape Analysis](image)

4. **Conclusions**

This study presents shape representation of the leaf based on landmark using polygonal approximation method. Based on the experimental results, polygonal approximation method can represent landmarks of four leaf shapes such as elliptic, obovate, ovate, and oblong. To get the best landmark, necessary to determine the value of static threshold manually, it is not effective so that required dynamic threshold.

5. **References**

