This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Steam Gasification of Municipal Solid Waste in Drop Tube Fixed Bed Reactor

and

Published under licence by IOP Publishing Ltd
, , Citation Nuth Sirirermrux and Somrat Kerdsuwan 2019 IOP Conf. Ser.: Earth Environ. Sci. 265 012017 DOI 10.1088/1755-1315/265/1/012017

1755-1315/265/1/012017

Abstract

Waste-to-Energy (WTE) technology becomes crucial option for Municipal Solid Waste (MSW) disposal and recovery clean energy. Thermal conversion technology by steam gasification plays important key role for sustainable solution of WTE and enrich the production of Hydrogen. In this work, gasification experiment was conducted in small dropped tube fixed bed reactor by feeding surrogate MSW which including of food & kitchen waste, plastic (polyethylene & polypropylene), paper, rubber & leather, textile and biomass. The experimental conditions were varied at temperature 700, 800 and 900°C. Steam was supplied as gasifying agent with flow rate of 0.1, 0.2 and 0.3 ml/min. The main purpose was to produce hydrogen by water gas-shift reaction, nevertheless, other related producer gas e.g. carbon monoxide, methane, carbon dioxide and light hydrocarbon gas were also examined. The result showed reaction temperature 800°C with steam flow rate 0.2 ml/min offer the optimized hydrogen yield as 34.84 gh2/kgmsw whereas it trended to decrease when reaction temperature increase. In addition, the overall performance of experimental condition was evaluated by energy output and energy conversion efficiency which were calculated from volumetric of combustible gas. The minimum energy output and energy conversion efficiency were 7,638 kJ/kgsample and 31.11%, respectively, obtained at reaction temperature 700°C with steam flow rate 0.2 ml/min while the maximum value was offered by reaction temperature 900°C with same steam flow rate as 17,756 kJ/kgsample and 72.32%, respectively.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1755-1315/265/1/012017