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Abstract. Electromagnetic Transients (EMT) simulation is an effective approach to study the 

dynamic behavior of complex AC/DC power grids. However, with increasing applications of 

the electronic equipment and the expansion of power grid, conventional EMT simulation tools 

are facing significant challenges with regard to simulation speed and scale. In order to improve 

the performance of EMT simulation, some approaches have been proposed. A time domain 

transformation methodology [1] has recently been proposed. In this paper, based on the large 

time step EMT algorithm, an electromagnetic transient simulation program has been developed 

and is used to study large scale power system dynamic behaviors. The result shows that the 

new EMT algorithm can not only guarantee the simulation accuracy, but also effectively 

improve the speed of full electromagnetic transient simulation of large scale complex power 

grids. 

1. Introduction 

Electromagnetic Transients (EMT) simulation is an effective tool to study the dynamic behavior of 

complex AC/DC power grids. However, with the electronic equipment increase and power grid 

expansion, conventional EMT tools are facing significant challenges with regard to simulation speed 

and scale. In order to improve the EMT’s performance, several computing technologies have been 

adopted, which can be divided into four categories. 

1.1. System Equivalent  

The AC power grid is divided into the internal system and the external system. The internal system is 

the one with great interests, and the detailed EMT modeling is used for this part. The remaining 

system is the external system which is reduced to an equivalent system. In order to precisely reflect the 

wide band frequency dynamic characteristics of the external system, the frequency dependent network 

equivalent is proposed to represent the high frequency behavior of the external system. But, besides 

the possible passivity problem, the system equivalent method should have limitations when the 

external systems contain nonlinear components [2-6]. 
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1.2. Hybrid Simulation 

The hybrid simulation divides the system into two parts: the large system, which uses 

electromechanical transient models as well as the other part which is of more interests and represented 

with electromagnetic transient simulation model. The electromechanical transient is based on 

fundamental frequency, single-phase and phasor-type data, while the electromagnetic transient is 

based on three-phase instantaneous waveform data, which includes wide-band frequency elements. 

The difference of modeling in TS-EMT hybrid simulation presents many difficult problems, which 

need further investigation [7-12]. 

1.3. Parallel Computing and Multi-rate simulation technique 

The parallel implicit multi-rate simulation algorithm, builds the basic modeling, and then, the parallel 

algorithm via the transmission line equation. The result shows that the multi-rate electromagnetic 

transient simulation algorithm based on transmission lines has higher parallelized levels and efficiency 

than the existing one. Simulation study shows that the parallel implicit multi-rate electromagnetic 

transient simulation based on the transmission lines might be unstable [13-16]. 

1.4. Frequency-adaptive Simulation of Transients 

In power system, the AC frequency is typically 50 or 60 Hz, and perturbations usually cause low 

frequency deviations, resulting in narrow bandwidth waveforms. In order to use large time step, the 

original system needs to be transformed into a shifted-frequency system where the frequency around 

the fundamental frequency becomes the frequency around dc (0 Hz). Using of large time step can 

improve the simulation efficiency and expand the scale [17-20]. 

In this paper, a new frequency adaptive algorithm is adopted, which uses a time domain 

transformation technology. The component model is obtained through discretization at the branch 

level. With this method, the time step can be increased by tens or hundreds of times, without losing 

accuracy, which greatly improves the simulation speed. 

2. Time Domain Transformation Theory  

The amplitude and phase of voltages and currents in AC system are actually a low-frequency signals. 

These signals produce slowly varying waveform superimposed on the fundamental frequency, as 

follows: 

 
( ) ( )cos[ ( )]

0
x t A t t t  

 (1) 

Suppose that ( )x t  is the solution of the following ordinary differential equation (ODE): 

 
' ( , )x f t x

  (2) 

Upon defining 

 

'

s

x
y


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 (3) 

s is a newly introduced simulation parameter, which usually set as the fundamental frequency. 

 0s 
 (4) 

We can construct two new variables with the following transformation: 
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Where the transformation matrix is defined as 
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The amplitude ( )A t  and the phase angle ( )t , are slowly varying signals, then we have  
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( ) ( )cos[ ( )]u t A t t

  (7) 

 
( ) ( )sin[ ( )]v t A t t

  (8) 

which implies that ( )u t and ( )v t are signals varying more slowly than the original signal ( )x t and 

( )y t . 

3. Numerical Solutions Based on Time Domain Transformation 

Suppose the TR method is used to solve the ODEs about ( )u t and ( )v t , then we have 
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Where h is the time step. We obtain the following discretization formula: 
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Applying the properties of ( )R t and ( )T t  , we can derive 
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4. Component Models Based on Time Domain Transformation  

Models for different network components can be obtained at the branch level based on (12), which 

provides an algebraic equation relating branch voltages and currents at any given instant of time to 

their past values. Prior to this, the concepts of “differential network” and “differentially extended 

network” of the original network are firstly introduced. The “differential network” is the network 

which gives the differential solutions of the original network. The “differentially extended network” is 

obtained through combining the “differential network” and the original network.  

The “differentially extended network” of one network shown in Figure 1. is used to illustrate the 

concepts. The left part of Figure 1. is same as the original network. The right part is the corresponding 

“differential network”, where the resistance of dR , the inductance of, dL  and the capacitance of dC

equal to the resistance of R , the inductance of L , and the capacitance of C , respectively.  

Applying (12) to the “differentially extended network” gives the equivalent circuit for the time 

domain simulation which is shown in Figure 2, where 
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Figure 1. Differential expansion 

network 

 Figure 2. Equivalent circuit of original 

network in time domain simulation 

The history current of L  and dL is 

1

1 1 1
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The history current of C  and dC is 
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Where 
1 0

0 1/ s

K


 
  
 

 

E is the 2-order identity matrix. Equations (13)–(16) give the component models of inductors and 

capacitors based on the discretization formula (12). The branch level models of other network 

components can be similarly obtained. 

5. Steady State Study of Large Scale Power System 

In order to investigate effect of the large time step EMT algorithm in large scale power system 

application scenarios, a steady power flow based on a real power system (large scale power system I) 

is studied. This system includes 3147 three-phase nodes, 3431 transmission lines, 122 generators, 879 

transformers. The computer used for simulation is installed with a Core i7-5960X CPU (3.0-GHz octa-

core processor) and 4 channel DDR4 2133 memory (4X4GB). To verify the accuracy, the obtained 

results are compared with the results of PSD-BPA’s power flow program.  And different time step is 

also used to test the accelerated ratio. 

5.1. The Large Time Step EMT in 1us  

The large time step EMT calculates the power flow in 1us time step. The Table 1 shows the results 

comparing with PSD-BPA. Table 1 only gives the bus voltages with top 5 largest errors. 

Table 1. Comparing steady state voltage 

Node RMS Voltage  

PSD-BPA(kV) 

RMS Voltage Large 

Time Step(kV) 

Error(kV) 

Node1 228.4112412 228.4195998 -0.008358603 

Node2 228.4021348 228.4104823 -0.008347455 

Node3 228.5585101 228.5668526 -0.00834245 

Node4 228.8753206 228.8832036 -0.007883063 

Node5 228.8757874 228.8836587 -0.00787134 

http://www.so.com/link?url=http%3A%2F%2Fdict.youdao.com%2Fsearch%3Fq%3Ddiscretization%26keyfrom%3Dhao360&q=discretization&ts=1505784768&t=70fbf9040d1c9531cca6870513fc4e7
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5.2. The Time Consumption of Different time Step 

The large time step EMT simulation used different time steps (10us, 50us,150us,500us) for 10s steady 

state simulation. Regarding to different time step, we can measure the voltage on the same node and 

compare them with the result in 1us time step. Table 2 shows the comparisons and Table 3 lists the 

time consumption. 

As shown in Table 2, with the time step increasing, the node voltage still remains good accuracy. 

And the Table 3 indicates the obvious acceleration with larger time step.  

Table 2. Comparing the voltage of different time step 

Time step(μs) 
Node voltage 

(kV) 

Voltage error(kV) 

(based on 1μs step ) 

1 510.4869121 -- 

10 510.4869717 0.0000596 

50 510.4884144 0.0015024 

150 510.5004392 0.01352715 

500 510.5335448 0.0466327 

Table 3. Comparing time consumption of different time step 

Time Step(μs) Calculating Time Consumption(s) 

1 557.99 

10 43.86 

50 23.36 

150 19.71 

500 9.35 

5.3. The Time Consumption With Multi Threading 

The large time step EMT can be combined with parallel computation technology. The time 

consumption with different threads are given in Table 4. The simulation duration is 10s.  

Table 4. Comparing the calculating time consumption of different threads 

Threads Time Step/Simulation Duration  

(50us/10s) 

Time Step/Simulation  Duration 

(500us/50s) 

1 106.16 109.322 

2 58.2474 61.9543 

3 42.5405 43.3763 

4 35.8628 36.2689 

5 28.8461 29.3556 

6 24.6741 26.2666 

7 20.7669 21.6865 

8 18.7007 19.548 

As shown in Table 4, with the number of thread increasing, obvious acceleration can be observed.  

Beyond 4 threads, acceleration is gradually slowed down. 

6. Transient Study of Large scale  Power System 

To test the performance of the large time step EMT simulation, different faults are applied to the large 

scale power system as in section 5 is used. The results are compared with the PSD-BPA’s transient 

stability program. 

6.1. Three-phase faults 

Fault setting is shown as in Table 5.The curve comparisons are shown in Figure 3, Figure 4, Figure 5. 
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Figure 3. Node voltage curve 
 



AT3E 2018

IOP Conf. Series: Earth and Environmental Science 223 (2019) 012022

IOP Publishing

doi:10.1088/1755-1315/223/1/012022

7

 

 

 

 

 

 

 

Figure 4. Generator transient angle curve 

 

Figure 5. Power curve 
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Table 5. Fault setting 

Fault Point Simulation 

Time(s) 

Fault Time 

(s) 

 Fault Duration 

(ms) 

Time 

Step(us) 

Time Consumption 

(s) 

Node1 bus side 60 40 100 500 119.663 

6.2. Two Faults Between Two Lines 

Fault setting is shown as in Table 6. The curve comparisons are shown in Figure 6, Figure 7, Figure 8. 

 

Figure 6. Node voltage 

curve 

 

 

 

 

 

 

 

 

Figure 7. Generator rotor angle curve. 



AT3E 2018

IOP Conf. Series: Earth and Environmental Science 223 (2019) 012022

IOP Publishing

doi:10.1088/1755-1315/223/1/012022

9

 

 

 

 

 

 

 

Figure 8. Power curve. 

Table 6. Fault setting 

Fault point Simulation 

Time(s) 

Fault Time 

(s) 

 Fault 

Duration(ms) 

Time Step 

(us) 

Time 

Consumption(s) 

Line 1 A phase 

Line 2 B phase 

40 20 100 500 109.681 

Through the fault transient result comparison, we can see the large time step EMT have good 

accuracy and exhibits more details during fault process. 

7. Transient Studies of Larger-scale power system II with Large Time Step EMT, PSD-BPA and 

PSCAD/EMTDC  

In this paper, another large scale power system (power system II) is further used to study the obtained 

transient response through comparing with PSCAD/EMTDC and PSD-BPA.  

The power system II includes 291 three-phase nodes, 360 transmission lines, 29 generators, 40 

three-phase loads. 

The same computer as in section 5 is used. Large time step EMT uses a time step 500us, simulation 

duration is 20s. The system fault is applied at 15s. 

7.1. Fault 1 

Fault setting is shown in Table 7. The consumed time of the large time step EMT simulation is 2.36s. 

The comparison of obtained results is shown as in Figure 9. 

Table 7. Fault setting 

Fault Point Fault Description Output Variable 

500kV Line1: 

Node1-node2 

 N-1 

Node2 side three-phase fault and 

the fault line is removed after 0.1s.  

voltage of the node1  

rotor angle of generator 1 in power plant 1 

Power in 500kV line2  node1-node3 
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7.2. Fault 2 

Fault setting is shown in Table 8. The consumed time of the large time step EMT simulation is 2.1s. 

The simulation results are shown as in Figure 10. 

 

Figure 9. Node1-node2 line n-1 fault. 

Table 8. Fault setting 

Fault Point Fault Description Output Variable 

500kV Line1: 

Node1-node2   

N-2 

Node2 side three-phase fault and the fault 

line is removed after 0.1s. 0.3s later 

generator 2 in  power plant 1 is removed. 

voltage of the node1 

Generator 1 rotor angle in power plant 1 

Power in 500kV line2  node1-node3 

 
Figure 10. Node1-node2 line n-2 fault. 
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Because of the minor deviation in initial state and load condition, the generator rotor angles of 

PSCAD/EMTDC have certain error. But the overall trend is consistent. The large time step EMT can 

directly obtain initial conditions from PSD-BPA with a developed translation tool, the obtained results 

are more accurate. The comparison of results also indicates that, under the same grid structure and 

initial condition the electromechanical transient and electromagnetic transient simulation can acquire 

similar results. 

8. Conclusion 

This paper introduces a large time step EMT modeling and simulation method using time domain 

transformation methodology. This method can effectively improve the speed of EMT simulation, and 

also guarantee high accuracy. It is a useful tool for the study of complex dynamic behaviors of large 

scale complex AC/DC power grids. Using different simulation software, this paper compares the 

results during the steady state and transient conditions with large scale power grid. And the results 

demonstrate the high accuracy as well as efficiency of the large time step EMT simulation method. 

 For the comparison of the steady power flow, the large time step EMT can achieve fast 

initialization for the large scale power grid. Although the accuracy of power flow descends with the 

time step increase, but the deviation is acceptable.  

 Through enlarging the time step, the large time step EMT simulation speed-up ratio nearly 

increased linearly. Especially combined the parallel calculation, the large time step EMT 

simulation can achieve real time simulation for a system with thousands of buses. 

 During the fault transient, the large time step EMT simulation can also maintain high accuracy. In 

the tested cases, the obtained rotor angles of the synchronous generators are very close to the 

electromechanical transient results. The largest deviation is under 0.3 degree. 

 Before and after the fault transient, the power flow of large time step EMT simulation agree with 

the electromechanical transient very well. But during the fault transient, besides the fundamental 

frequency component , the large time step EMT simulation can show more transient details . 

 Comparing the results of large time step EMT simulation, PSCAD/EMTDC and PSD-BPA of large 

scale power grid, they exhibit  good agreement in steady state as well as  fault transient. It means 

under the same grid structure and initial condition the electromechanical transient and 

electromagnetic transient simulation can acquire similar results. And it verifies the effectiveness of 

large time step EMT simulation method.    

 For a 20 seconds simulation, the CPU time of large time step EMT simulation using given 

hardware is less than 2.4s (for the large scale power system II). The simulation speed is raised by 

two orders of magnitude than PSCAD/EMTDC. The Large time step EMT could effectively 

improve the EMT simulation efficiency of large scale AC system.    
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