This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy. Close this notification
The following article is Open access

Occlusion handling in videos object tracking: A survey

, , and

Published under licence by IOP Publishing Ltd
, , Citation B Y Lee et al 2014 IOP Conf. Ser.: Earth Environ. Sci. 18 012020 DOI 10.1088/1755-1315/18/1/012020

1755-1315/18/1/012020

Abstract

Object tracking in video has been an active research for decades. This interest is motivated by numerous applications, such as surveillance, human-computer interaction, and sports event monitoring. Many challenges regarding tracking objects remain, this can arise due to abrupt object motion, changing appearance patterns of objects and the scene, non-rigid object structures and most significancly occlusion of tracked object (be it object-to-object or object-to-scene occlusions). Generally, occlusion in object tracking occurs under three situations: self-occlusion, inter-object occlusion by background scene structure. Self-occlusion most frequently arises while tracking articulated objects when one part of the object occludes another. Inter-object occlusion occurs when two objects being tracked occlude each other whereas occlusion by the background occurs when a structure in the background occludes the tracked objects. Typically, tracking methods handle occlusion by modelling the object motion using linear and non-linear dynamic models. The derived models will be used to continuously predicting the object location when a tracked object is occluded until the object reappears. Examples of these methods are Kalman filtering and Particle filtering trackers. Researchers have also utilised other features to resolved occlusion, for example, silhouette projections, colour histogram and optical flow. We will present some results from a previously conducted experiment when tracking single object using Kalman filter, Particle filter and Mean Shift trackers under various occlusion situations. We will also review various other occlusion handling methods that involved using multiple cameras. In a nutshell, the goal of this paper is to discuss in detail the problem of occlusion in object tracking and review the state of the art occlusion handling methods, classify them into different categories, and identify new trends. Moreover, we discuss the important issues related to occlusion handling including the use of appropriate selection of motion models, image features and use of multiple cameras.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1755-1315/18/1/012020