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Abstract. Compressed sensing (CS) is a new framework for sampling and reconstructing 

sparse signals from measurements significantly fewer than those prescribed by Nyquist rate in 

the Shannon sampling theorem. This new strategy, applied in various application areas 

including synthetic aperture radar (SAR), relies on two principles: sparsity, which is related to 

the signals of interest, and incoherence, which refers to the sensing modality. An important 

question in CS-based SAR system design concerns sampling rate necessary and sufficient for 

exact or approximate recovery of sparse signals. In the literature, bounds of measurements (or 

sampling rate) in CS have been proposed from the perspective of information theory. However, 

these information-theoretic bounds need to be reviewed and, if necessary, validated for CS-

based SAR imaging, as there are various assumptions made in the derivations of lower and 

upper bounds on sub-Nyquist sampling rates, which may not hold true in CS-based SAR 

imaging. In this paper, information-theoretic bounds of sampling rate will be analyzed. For this, 

the SAR measurement system is modeled as an information channel, with channel capacity and 

rate-distortion characteristics evaluated to enable the determination of sampling rates required 

for recovery of sparse scenes. Experiments based on simulated data will be undertaken to test 

the theoretic bounds against empirical results about sampling rates required to achieve certain 

detection error probabilities. 

1.  Introduction 

The Nyquist–Shannon sampling theorem states that perfect reconstruction of a signal is possible when 

the sampling frequency is greater than twice the maximum frequency of the signal being sampled. If 

sub-Nyquist sampling rates are used, the original signal's information may not be completely 

recoverable from the sampled signal[1]. Under certain conditions, compressed sensing[2-5] (or 

compressive sampling, CS) states that certain signals and images may be recovered from far fewer 

samples or measurements than that required by the Nyquist–Shannon sampling theorem. 

According to the theory of CS, with an incoherent linear projection acquiring an efficient 

representation of a sparse or compressible signal, the signal can be reconstructed by solving an inverse 

problem either through linear programming or greedy pursuit[2]. Suppose that a vector x  of length n  

is known to have a small number k  of nonzero entries, but the values and locations of the nonzero 

entries are unknown and must be estimated from a set of m  noisy linear projections (or samples) 

given by the vector Y : 
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  Y Ax b   (1) 

where A  is a known m n  measurement matrix and b  is additive white Gaussian noise (CH1 in [6]). 

The problem of determining which entries in the unknown signal x  are nonzero is known as support 

recovery (sparsity pattern recovery) (CH1 in [6]). 

With the development of CS theory, a new synthetic aperture radar (SAR) imaging modality [7-11] 

has been proposed that can obtain accurate representation of signals with much fewer samples or 

measurements than traditional matched filter (MF) methods. An important question in CS-based SAR 

system designs concerns sampling rates necessary and sufficient for exact or approximate recovery of 

sparse signals. 

Much previous work ([1],[13-22] ) has focused on necessary and sufficient conditions for exact or 

approximate recovery of the sparsity pattern. In the literature, bounds of measurements (or sampling 

rate) in CS have been proposed from perspectives including information theory. However, these 

information-theoretic bounds need to be reviewed and, if necessary, validated for CS-based SAR 

imaging, as there are various assumptions made in the derivations of lower and upper bounds on sub-

Nyquist sampling rates, which may not hold true in CS-based SAR imaging.  

This paper seeks to provide an overview of theoretic fundamentals that can be used to provide 

anchor points for determining CS sampling rates. For this, CS theorems and classic information 

theoretic concepts and quantities including channel capacity and Fano’s inequality are described with 

respect to the bounds on sampling rates necessary and/or sufficient for sparsity pattern recovery. Thus, 

a SAR measurement system can be modeled as an information channel, with channel capacity and 

rate-distortion characteristics evaluated to enable the determination of sampling rates required for 

recovery of sparse scenes. SAR imaging is briefly described to furnish its implementation in the 

language of CS. This is followed by experiments based on simulated data, which were undertaken to 

test the theoretic bounds on sampling rates required to achieve certain detection error probabilities. 

Finally, some concluding remarks are given. 

2.  Methodology 

2.1.  CS and Restricted isometry property 

Consider a measurement system 

  Y Ax b   (2) 

where x  is an object we wish to reconstruct, Y  are available measurements, b is noise, and A  is a 

known m n  matrix with m n . We define this kind of systems as underdetermined linear system, 

since the system has more unknowns than equations, and thus it has either no solution if b is not in the 

span of the columns of the matrix A , or infinitely many solutions[23].  

Here, we are interested in this underdetermined case with fewer equations than unknowns ( m n ), 

and ask whether it is possible to reconstruct x  with good accuracy. As such, the problem is of ill-

posed but suppose now that x  is known to be sparse or nearly sparse in the sense that it depends on a 

smaller number of unknown parameters. This premise radically changes the problem, making the 

search for solutions feasible[14]. In fact, it has been shown that solving the convex problem 

           P2: 
1 2 

min    subject to  x Ax Y b   (3) 

will recover an unknown sparse object with an error at most proportional to the noise level provided 

that 1) x  is sufficiently sparse and 2) the matrix A  obeys a condition known as the restricted isometry 

property[14] introduced in Equation(4). 

Theorem 1.1 (Theorem 1.1 of [16]) Define the S-restricted isometry constant[15] S  of A  as the 

smallest quantity such that  

 
2 2 2

2 2 2
(1 ) (1 )S S    x Ax x   (4) 
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Let s  be such that 3 43 2S S    (
3S and 

4S  are restricted isometry constants of order 3S  and 4S , 

respectively), then for any signal 
0x  supported on 0T  (meaning the set of index of i where [ ] 0i 0x ) 

with 0T S and any perturbation b with 
2

b , the solution 
x  to (P2) obeys  

 
2

0 SC    x x   (5) 

where the constant SC  depends only on 4S .  

If considering how many measurements are necessary to achieve the RIP, we can establish a simple 

lower bound if we ignore the impact of  (restricted isometry constant) and focus only on the 

dimensions of the problem (n, m, and k) ([17], Section A.1). 

Theorem 1.2 (Theorem of 3.5, Lemma 1.3 of [24]) Let A  be an m n  matrix that satisfies the RIP of 

order 2k with constant  1
2 2

0,k  . Then 

 log
n

m Ck
k

 
  

 
  (6) 

where 2

2

2

1 (1 2 )

k

k

C


 


.
 

2.2.  Information theoretic bounds 

2.2.1.  Rate distortion function and channel capacity 

When an unknown signal is measured by a noisy linear measurements system as displayed in Equation 

(2), approximate rather than exact recovery is often what is possible as the measurements are 

imperfect. The rate distortion function[25] 
   I
R D  is the lower bound for information transmission 

rate, and also the least average information content needed to recover the source signal within the 

given distortion. 

 
   

       
 

 



 ˆ

| : | ,ˆ ˆ ˆ

ˆmin ;
I

p p p d D
R D I

x,x
x x x x x x x

X X   (7) 

In order to determine how many measurements is necessary to recover the unknown signals, 

Sarvotham, Baron, and Baraniuk[20] applied information theory, by which a linear measurement 

system can be seen as a combination of encoder and signal transmitter while the recovery algorithm is 

the decoder to supply the approximation of the original signal. Obviously, the measurement equation 

shown in Equation (2) can be regarded as a channel which transfers the signals so that we can get 

information about the signals (recovery of signals) from measurements.  

In [20], the amount of information that can be extracted from the CS measurements is investigated, 

and determined by the capacity of the measurement channel. Having upper bounded the information 

contained in the measurements, the authors investigate the minimum information needed to 

reconstruct the signal with distortion  XD .  

Theorem 2.1 (Theorem 1 in [20]) For a signal source with rate-distortion function R(.) and 

measurement scheme specified above, the lower bound on the CS measurement rate m n  required 

to obtain normalized reconstruction error  XD  subject to a fixed SNR is given by 

 
2 ( ( ))

log(1 )
XR D

SNR   (8) 

where  
X
D  is the distortion level, and SNR stands for signal to noise ratio [20]. 

Consider a k-sparse signal where the spikes have uniform amplitude, the lower bound on number of 

measurements [20] is: 

 
 

 

2 log

log 1

k n k

SNR
m


   (9) 
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2.2.2.  Fano’s inequality 

Suppose that we know a random variable Y  and we wish to guess the value of a correlated random 

variable X , for any estimator X̂  such that ˆ X Y X forms a Markov chain. Fano’s inequality [25] 

relates the probability of error in guessing the random variable X  (  ˆPreP  X X ) to its conditional 

entropy  |H X Y :  

      ˆlog | |e eH P P H H  X X X Y   (10) 

where  is the alphabet in which X  takes on values. 

Consider the issue of estimating the sparsity pattern (support) S 
of an unknown variable x from a 

measurement system 

  Y Ax b   (11) 

From the measurements Y  and matrix A , we want to obtain the estimate of S 
(i.e., Ŝ ). Define the 

probability of error 

  ˆPr ,P d S S D


       (12) 

where  ˆ,d S S  is the distortion between S 
 and Ŝ . 

We observe that  *S S Y,A   forms a Markov chain. From the perspective of Fano’s 

inequality [6][25], the probability of error in reconstructing the support S 
 correlates with the 

conditional entropy between S 
 and  ,Y A , and further the sampling rate m n  determined by the 

measurements matrix A . 

In [6](Ch3), lower bounds on the fundamental sampling rate distortion-function are derived. These 

bounds consist of necessary conditions which apply generally to any possible recovery algorithm. 

 
 

 

2 ;

log 1 X

R D

SNR V




 
   (13a) 

where  

        1 ,  1
, 1

0,                           1

D
H H D H D

R D

D


   

 


          
  

 , (sparsity rate) k n   (13b) 

2.3.  CS-based SAR 

SAR can obtain a two-dimensional image of the observed scene. The conventional SAR imaging 

algorithm based on Matched Filter theory limits the resolution by the transmitted signal bandwidth and 

the antenna length [10]. When applying CS to SAR imaging, we can utilize radar measurements 

significantly fewer than what are required of traditional radar imaging algorithms to obtain an accurate 

representation for further processing. CS can eliminate the need for the Matched Filter in the radar 

receiver, and reduce the required receiver A/D conversion bandwidth so that CS-based SAR systems 

can operate at information rates that are potentially lower than Nyquist rates, which are often 

extremely high for fine-resolution systems [7]. 

Suppose a SAR system transmits a linear frequency modulated (LFM) signals as 

 
2( ) ( ) exp( 2 )c dr

t
s t rect j f t j f t

T
     (14) 

where cf  denotes carrier frequency, drf  is LFM chirp data, t  is the fast-time, T  is pulse repetition 

time, and  rect t  denotes the unit rectangular function   1rect t  when 2t T . For a 2-D 

illuminated scene   with N  scatters (a single scatter is denoted by iP ), the echo signal can be written 

as [10]:  
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; ;

, exp 2 4    =  exp ,
1 1

N NR n P R n P
i i

s t n j f t j f j t nc i dr c i iC Ci i
    

 
                
   

  (15) 

where n  is the low-time, i denotes the scattering coefficient of a scatter iP . To easily facilitate the 

numerical implement, a long vector 
1NC  ( a rN N N  ) is formed by the columns of 

matrix A , rN and aN  denote sample size in range and azimuth directions, respectively . 

In order to use CS, a linear measurement model of SAR should be created. Equation (15) can be 

written in the form of an inner product: 

  S Φ n   (16) 

where 

  1 2, ,...,
T

N       

       1 1 2 2, , , ,..., ,
r a

T

c c c N Ns t n s t n s t nS    

For a sparse scene, we assume that  is k sparse when only k  ( k N ) of its coefficients is nonzero 

or greater than zero. According to CS theory, it is possible to recover the sparse signal with only a 

small number of samples of measured signal S . 

3.  Experiments 

In the experiment, the CS based SAR imaging system was simulated. The original signal comes from 

sparse binary sources[26] where the spikes have uniform amplitude 1, and then multiplied by a 

measurement matrix which is constructed by choosing M rows (M varies from 20 to 600 by a step of 

20) from a 1000 by 1000 convolutional matrix, whose baseband is 1-D chirp signal, with bandwidth 

50MHz, pulse duration s2 , sampling rate 1.2 times of Nyquist rate. The measurements are corrupted 

with additive Gaussian noise. To reconstruct the spike signal, a common used algorithm called 

LASSO[27] was used. As the original signal is complex-valued, the real and the imaginary part of the 

reconstituted signal and recovered support (sparsity pattern) are displayed in Figure 1(d),1(e),1(g) and 

1(h), respectively.  

Figure 1 shows the experiment results with a simulated CS-SAR system. For this, a total of 200 

measurements of the 1-dimensional signal (a vector of length 1000) were used to reconstruct the 

original signal with 30 spikes. With the signal-noise ratio (SNR) set to 10 dB, the support of the spike 

signal was recovered with a distortion [6] (error probability) of 0.06. 

Figure 2 shows the average distortion of sparsity support detection for n = 1000, SNR =10 dB, 

with varying k  and m , where each point indicates the summed result of 10 independent trials. 

Simulation results for combinations of k and m (  10,20,30,...100k  and  20,40,60,...600m ) are 

shown . As shown in Figure 2, as m  is increasing, there is a transition from higher to lower distortion 

errors. 

Overlaid on the intensity plots 2(a) 2(b) 2(c) are curve representing what would be evaluated for 

the lower bounds (for numbers of measurements) on the basis of Equations (6), (9), and (13a), 

respectively. As expected, the necessary measurement represented by the curves on the plot is less 

than that needed in practice. There are two reasons for this: 1) the lower bounds retrieved from RIP or 

information theory is a general result applicable to a few special types of measurement matrices 

instead of only the one used in the experiment, 2) the channel capacity and rate distortion function 

(tools used to get information theoretic bounds) are the limits that may be realized under ideal 

environments.  
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Figure 1. Simulated CS-SAR and experiments: (a) original signal, (b) measurement matrix,  (c) noise, 

(d)-(f) reconstructed signal, (g)-(h) recovered support, and (i) support detection error.  

4.  Conclusion and discussion 

We have considered the problem of approximate recovery of sparse signals from noisy random linear 

measurements, which are easily obtained by multiplying the signal with a convolutional matrix used in 

a SAR imaging system. Numbers of measurements required for sparsity pattern recovery were 

reviewed from the perspectives of CS theorems and information theory. The experiment on a 

simulated SAR system suggests that CS theory (random projections on a convolution matrix) is 

extensible to SAR imaging. Preliminary results reveal the commonality and discrepancy between 

theoretic and empirical results about the required sampling rates in CS-based SAR imaging system. 

Further research is needed to test the applicability of CS sampling rates on SAR imaging in an 

operational setting where continuous signal amplitudes, complex SNR and other parameters, a priori 

unknown sparsity patterns, and other complications are likely involved.    
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Figure 2. Errors in sparsity support detection for n= 1000 and varying values of k, m: (a) red curve 

representing the errors calculated by Equation (6) with C = 0.5468,  (b) green curve by Equation (9) 

with SNR = 10 dB, and (c) blue curve by Equation (13a) with distortion <= 20% and SNR = 10 dB (the 

gray scale indicates 0 (black) through100 (white) percent error probability). 
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