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Abstract. Compressed sensing (CS) is a new framework for sampling and reconstructing
sparse signals from measurements significantly fewer than those prescribed by Nyquist rate in
the Shannon sampling theorem. This new strategy, applied in various application areas
including synthetic aperture radar (SAR), relies on two principles: sparsity, which is related to
the signals of interest, and incoherence, which refers to the sensing modality. An important
question in CS-based SAR system design concerns sampling rate necessary and sufficient for
exact or approximate recovery of sparse signals. In the literature, bounds of measurements (or
sampling rate) in CS have been proposed from the perspective of information theory. However,
these information-theoretic bounds need to be reviewed and, if necessary, validated for CS-
based SAR imaging, as there are various assumptions made in the derivations of lower and
upper bounds on sub-Nyquist sampling rates, which may not hold true in CS-based SAR
imaging. In this paper, information-theoretic bounds of sampling rate will be analyzed. For this,
the SAR measurement system is modeled as an information channel, with channel capacity and
rate-distortion characteristics evaluated to enable the determination of sampling rates required
for recovery of sparse scenes. Experiments based on simulated data will be undertaken to test
the theoretic bounds against empirical results about sampling rates required to achieve certain
detection error probabilities.

1. Introduction

The Nyquist—Shannon sampling theorem states that perfect reconstruction of a signal is possible when
the sampling frequency is greater than twice the maximum frequency of the signal being sampled. If
sub-Nyquist sampling rates are used, the original signal's information may not be completely
recoverable from the sampled signal[1]. Under certain conditions, compressed sensing[2-5] (or
compressive sampling, CS) states that certain signals and images may be recovered from far fewer
samples or measurements than that required by the Nyquist—Shannon sampling theorem.

According to the theory of CS, with an incoherent linear projection acquiring an efficient
representation of a sparse or compressible signal, the signal can be reconstructed by solving an inverse
problem either through linear programming or greedy pursuit[2]. Suppose that a vector X of length n
is known to have a small number K of nonzero entries, but the values and locations of the nonzero
entries are unknown and must be estimated from a set of M noisy linear projections (or samples)
given by the vector Y :
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Y =Ax+b (1)

where A is a known MxN measurement matrix and b is additive white Gaussian noise (CH1 in [6]).
The problem of determining which entries in the unknown signal X are nonzero is known as support
recovery (sparsity pattern recovery) (CHI in [6]).

With the development of CS theory, a new synthetic aperture radar (SAR) imaging modality [7-11]
has been proposed that can obtain accurate representation of signals with much fewer samples or
measurements than traditional matched filter (MF) methods. An important question in CS-based SAR
system designs concerns sampling rates necessary and sufficient for exact or approximate recovery of
sparse signals.

Much previous work ([1],[13-22] ) has focused on necessary and sufficient conditions for exact or
approximate recovery of the sparsity pattern. In the literature, bounds of measurements (or sampling
rate) in CS have been proposed from perspectives including information theory. However, these
information-theoretic bounds need to be reviewed and, if necessary, validated for CS-based SAR
imaging, as there are various assumptions made in the derivations of lower and upper bounds on sub-
Nyquist sampling rates, which may not hold true in CS-based SAR imaging.

This paper seeks to provide an overview of theoretic fundamentals that can be used to provide
anchor points for determining CS sampling rates. For this, CS theorems and classic information
theoretic concepts and quantities including channel capacity and Fano’s inequality are described with
respect to the bounds on sampling rates necessary and/or sufficient for sparsity pattern recovery. Thus,
a SAR measurement system can be modeled as an information channel, with channel capacity and
rate-distortion characteristics evaluated to enable the determination of sampling rates required for
recovery of sparse scenes. SAR imaging is briefly described to furnish its implementation in the
language of CS. This is followed by experiments based on simulated data, which were undertaken to
test the theoretic bounds on sampling rates required to achieve certain detection error probabilities.
Finally, some concluding remarks are given.

2. Methodology

2.1. CS and Restricted isometry property
Consider a measurement system

Y =Ax+b 2)
where X is an object we wish to reconstruct, Y are available measurements, b is noise, and A is a
known mxn matrix with m<n. We define this kind of systems as underdetermined linear system,
since the system has more unknowns than equations, and thus it has either no solution if b is not in the
span of the columns of the matrix A, or infinitely many solutions[23].

Here, we are interested in this underdetermined case with fewer equations than unknowns (m<n),
and ask whether it is possible to reconstruct X with good accuracy. As such, the problem is of ill-
posed but suppose now that X is known to be sparse or nearly sparse in the sense that it depends on a
smaller number of unknown parameters. This premise radically changes the problem, making the
search for solutions feasible[14]. In fact, it has been shown that solving the convex problem

P2 minx||,  subject to [[Ax—Y], <b 3)

will recover an unknown sparse object with an error at most proportional to the noise level provided
that 1) X is sufficiently sparse and 2) the matrix A obeys a condition known as the restricted isometry
property[14] introduced in Equation(4).

Theorem 1.1 (Theorem 1.1 of [16]) Define the S-restricted isometry constant[15] &5 of A as the
smallest quantity such that

(1_ 55)")(

", <llax

s <@+ (4)
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Let s be such that 5,5 +30,5 <2 (J,5 and J,4 are restricted isometry constants of order 3s and 4s,
respectively), then for any signal X, supported on T, (meaning the set of index of i where X,[i]#=0)
with [Tg| <'S and any perturbation b with |b]|, <&, the solution X" to (P2) obeys

X =xq

. <C5-¢ (5)

where the constant Cg depends only on J .

If considering how many measurements are necessary to achieve the RIP, we can establish a simple
lower bound if we ignore the impact of o (restricted isometry constant) and focus only on the
dimensions of the problem (n, m, and k) ([17], Section A.1).

Theorem 1.2 (Theorem of 3.5, Lemma 1.3 of [24]) Let A be an mx N matrix that satisfies the RIP of

order 2k with constant &, € (0,%]. Then

m > Ck log [Ej (6)

26,

where C =~ s

2.2. Information theoretic bounds

2.2.1. Rate distortion function and channel capacity
When an unknown signal is measured by a noisy linear measurements system as displayed in Equation
(2), approximate rather than exact recovery is often what is possible as the measurements are

imperfect. The rate distortion function[25] R (D) is the lower bound for information transmission

rate, and also the least average information content needed to recover the source signal within the
given distortion.
) (p) = ~ (x:%)
&7 (0) PEx) Y D) (3/x)d(x.4)<0 %X (7)
In order to determine how many measurements is necessary to recover the unknown signals,
Sarvotham, Baron, and Baraniuk[20] applied information theory, by which a linear measurement
system can be seen as a combination of encoder and signal transmitter while the recovery algorithm is
the decoder to supply the approximation of the original signal. Obviously, the measurement equation
shown in Equation (2) can be regarded as a channel which transfers the signals so that we can get
information about the signals (recovery of signals) from measurements.
In [20], the amount of information that can be extracted from the CS measurements is investigated,
and determined by the capacity of the measurement channel. Having upper bounded the information
contained in the measurements, the authors investigate the minimum information needed to

reconstruct the signal with distortion &(Dy ).
Theorem 2.1 (Theorem 1 in [20]) For a signal source with rate-distortion function R(.) and
measurement scheme specified above, the lower bound on the CS measurement rate p =m/n required

to obtain normalized reconstruction error g( D, ) subject to a fixed SNR is given by

2R(£(Dy )
— log(1+SNR) (8)

where & (DX) is the distortion level, and SNR stands for signal to noise ratio [20].

Consider a k-sparse signal where the spikes have uniform amplitude, the lower bound on number of
measurements [20] is:
2k log(n/k)

m= log(L+SNR) )
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2.2.2. Fano’s inequality
Suppose that we know a random variable Y and we wish to guess the value of a correlated random

variable X, for any estimator X such that X — Y — X forms a Markov chain. Fano’s inequality [25]
relates the probability of error in guessing the random variable X (P, = Pr(X * 5()) to its conditional
entropy H (X | Y) :

H(R)+ R log| 7] H(X|X)= H(X]Y) (10)
where y is the alphabet in which X takes on values.

Consider the issue of estimating the sparsity pattern (support) S of an unknown variable X from a

measurement system
Y =Ax+b (11)

From the measurements Y and matrix A, we want to obtain the estimate of S” (i.e., é). Define the
probability of error

P = Pr[d(s*,§)>D} (12)
where d (S*,é) is the distortion between S* and S .

We observe that S*—>(Y,A)—>§ forms a Markov chain. From the perspective of Fano’s

inequality [6][25], the probability of error in reconstructing the support S* correlates with the
conditional entropy between S* and (Y,A), and further the sampling rate m/n determined by the

measurements matrix A.
In [6](Ch3), lower bounds on the fundamental sampling rate distortion-function are derived. These
bounds consist of necessary conditions which apply generally to any possible recovery algorithm.

2R(D;x)
= Tog(1+SNR#Vy ) (13a)
where
R (D,K) = {H(K)_KH(D)_(l_K)H(f_I,D(j‘ D<d-x K (sparsity rate) = k/n (13b)
0, D>1-« ?

2.3. CS-based SAR

SAR can obtain a two-dimensional image of the observed scene. The conventional SAR imaging
algorithm based on Matched Filter theory limits the resolution by the transmitted signal bandwidth and
the antenna length [10]. When applying CS to SAR imaging, we can utilize radar measurements
significantly fewer than what are required of traditional radar imaging algorithms to obtain an accurate
representation for further processing. CS can eliminate the need for the Matched Filter in the radar
receiver, and reduce the required receiver A/D conversion bandwidth so that CS-based SAR systems
can operate at information rates that are potentially lower than Nyquist rates, which are often
extremely high for fine-resolution systems [7].

Suppose a SAR system transmits a linear frequency modulated (LFM) signals as

s(t) = rect(%)-exp( jortt+ jrf,t) (14)
where f_ denotes carrier frequency, f, is LFM chirp data, t is the fast-time, T is pulse repetition

time, and rect(t) denotes the unit rectangular function rect(t)=1 when |t|eT/2 . For a 2-D

illuminated scene Q with N scatters (a single scatter is denoted by P, ), the echo signal can be written
as [10]:
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2
N R(n;P R(n;P N
S¢ (t,n) = iglai exp jm‘dr{t—z(c')J —j4;zfc(c') = izlai exp[—jqﬁl(t,n)J

(15)

where n is the low-time, o; denotes the scattering coefficient of a scatter P.. To easily facilitate the
numerical implement, a long vector ceC" ( N= N, xN, ) is formed by the columns of

matrix A, N,and N, denote sample size in range and azimuth directions, respectively .
In order to use CS, a linear measurement model of SAR should be created. Equation (15) can be
written in the form of an inner product:
S=®o+n (16)
where

0'=[0'1,0'2,...,0N]T

S Z(Sc (tm).se (tany)oess: (tNr’nNa ))T

For a sparse scene, we assume that o is k sparse when only k (k << N ) of its coefficients is nonzero
or greater than zero. According to CS theory, it is possible to recover the sparse signal with only a
small number of samples of measured signal S.

3. Experiments

In the experiment, the CS based SAR imaging system was simulated. The original signal comes from
sparse binary sources[26] where the spikes have uniform amplitude 1, and then multiplied by a
measurement matrix which is constructed by choosing M rows (M varies from 20 to 600 by a step of
20) from a 1000 by 1000 convolutional matrix, whose baseband is 1-D chirp signal, with bandwidth
50MHz, pulse duration 248, sampling rate 1.2 times of Nyquist rate. The measurements are corrupted

with additive Gaussian noise. To reconstruct the spike signal, a common used algorithm called
LASSO[27] was used. As the original signal is complex-valued, the real and the imaginary part of the
reconstituted signal and recovered support (sparsity pattern) are displayed in Figure 1(d),1(e),1(g) and
1(h), respectively.

Figure 1 shows the experiment results with a simulated CS-SAR system. For this, a total of 200
measurements of the 1-dimensional signal (a vector of length 1000) were used to reconstruct the
original signal with 30 spikes. With the signal-noise ratio (SNR) set to 10 dB, the support of the spike
signal was recovered with a distortion [6] (error probability) of 0.06.

Figure 2 shows the average distortion of sparsity support detection for n= 1000, SNR =10 dB,
with varying K and m, where each point indicates the summed result of 10 independent trials.
Simulation results for combinations of £ and m (ke{10,20,30,..100} and me{20,40,60,..600} ) are

shown . As shown in Figure 2, as m is increasing, there is a transition from higher to lower distortion
errors.

Overlaid on the intensity plots 2(a) 2(b) 2(c) are curve representing what would be evaluated for
the lower bounds (for numbers of measurements) on the basis of Equations (6), (9), and (13a),
respectively. As expected, the necessary measurement represented by the curves on the plot is less
than that needed in practice. There are two reasons for this: 1) the lower bounds retrieved from RIP or
information theory is a general result applicable to a few special types of measurement matrices
instead of only the one used in the experiment, 2) the channel capacity and rate distortion function
(tools used to get information theoretic bounds) are the limits that may be realized under ideal
environments.
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Figure 1. Simulated CS-SAR and experiments: (a) original signal, (b) measurement matrix, (c) noise,
(d)-(f) reconstructed signal, (g)-(h) recovered support, and (i) support detection error.

4. Conclusion and discussion

We have considered the problem of approximate recovery of sparse signals from noisy random linear
measurements, which are easily obtained by multiplying the signal with a convolutional matrix used in
a SAR imaging system. Numbers of measurements required for sparsity pattern recovery were
reviewed from the perspectives of CS theorems and information theory. The experiment on a
simulated SAR system suggests that CS theory (random projections on a convolution matrix) is
extensible to SAR imaging. Preliminary results reveal the commonality and discrepancy between
theoretic and empirical results about the required sampling rates in CS-based SAR imaging system.
Further research is needed to test the applicability of CS sampling rates on SAR imaging in an
operational setting where continuous signal amplitudes, complex SNR and other parameters, a priori
unknown sparsity patterns, and other complications are likely involved.
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C=0.5468 SNR=10dB Distortion<= 0.2, SNR=10dB
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Figure 2. Errors in sparsity support detection for n= 1000 and varying values of &, m: (a) red curve
representing the errors calculated by Equation (6) with C = 0.5468, (b) green curve by Equation (9)
with SNR = 10 dB, and (c) blue curve by Equation (13a) with distortion <= 20% and SNR = 10 dB (the
gray scale indicates 0 (black) through100 (white) percent error probability).
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