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Abstract. Stable night lights data from Defense Meteorological Satellite Program (DMSP) 

Operational Line-scan System (OLS) provide a unique proxy for anthropogenic development. 

This paper proposed two new methods of extracting regional urban extents using DMSP-OLS 

data, MODIS NDVI data and Land Surface Temperature (LST) data. MODIS NDVI data were 

used to reduce the over-glow effect, since urban areas generally have lower vegetation index 

values than the surrounding areas (e.g. agricultural and forest areas). On the other hand, urban 

areas generally show higher surface temperatures than the surrounding areas. Since urban area 

is the only class of interest, a one-class classifier, the One-Class Support Vector Machine 

(OCSVM), was selected as the classifier. The first method is classification of different data 

combinations for mapping: (1) OLS data and NDVI data, (2) OLS data and LST data, and (3) 

OLS data, NDVI data and LST data combined. The second one is a morphological reconstruction 

based method which combines classification results from OLS plus NDVI data and from OLS 

plus LST data. In the morphological reconstruction based method, the classification result using 

OLS and NDVI data was used as a mask image, while the classification result using OLS and 

LST data was used as a marker image. The north China area covering 14 provinces was selected 

as study area. Classification results from Landsat TM/ETM+ data from selected areas with 

different development levels were used as reference data to validate the proposed methods. The 

results show that the proposed methods effectively reduced the over-glow effect caused by 

DSMP-OLS data and achieved better results compared to the results from the traditional 

thresholding technique. The combination of all three datasets produces more accurate results 

than those of using any two datasets. The proposed morphological reconstruction based method 

achieves the best result in urban extent mapping. 

1.  Introduction 

Regional and global urban extent distribution is a fundamental data source for many applications, such 

as evaluation of the impact of urbanization on environments and urban management and planning [1-2]. 

Mapping urban areas at regional and global scales from remote sensing data has considerable 

significance and has already attracted attention. However, it remains a challenging task [3-6]. Stable 

night lights data from Defense Meteorological Satellite Program (DMSP) Operational Line-scan System 

(OLS) provide a unique proxy for anthropogenic development. For mapping urban areas using DMSP-

OLS data, the thresholding technique is a common approach, because of its simplicity [7-10]. However, 

it’s difficult to select an appropriate DMSP-OLS threshold value for a large region, especially for the 

region with different development levels. On the other hand, the use of DMSP-OLS data alone often 

overestimates urban extents due to over-glow effect [11]. Some studies showed that urban areas 

generally have lower vegetation index values that their surrounding areas (e.g., agricultural and forest 
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areas) [12]. Thus, vegetation indices were combined with DMSP-OLS data to reduce the overglow effect 

and to obtain more accurate results [12-13]. It was also found that Land Surface Temperatures (LST) of 

urban areas are generally higher than their surrounding areas [14]. However, the LST data have not been 

used with DMSP-OLS data in mapping urban extent. The objective of this study is to propose new 

methods of extracting regional urban extents using DMSP-OLS data, MODIS NDVI data and LST data. 

2.  Study area and data 

China has been experiencing rapid urbanization since the 1980s and there is still large economic 

development discrepancy between different parts of China. Our study area is north China area, covering 

14 provinces with different development levels from east to west. In this paper, DMSP-OLS stable night 

lights data, MODIS NDVI data and LST data were used to map urban areas in a large region.  

The DMSP-OLS night lights data used in this study were provided by the National Oceanic and 

Atmospheric Administration (NOAA)/National Geophysical Data Center (NGDC). The DMSP-OLS 

images have a DN value range from 0 to 63. Yearly maximum NDVI composite image and yearly 

maximum LST composite image were used. Table 1 shows a brief description of these remote sensing 

data. The DMSP-OLS data and MODIS data used in this study, which all were acquired in 2006, were 

reprojected to Albers Conical Equal Area projection. The DMSP-OLS, MODIS NDVI and MODIS LST 

images were co-registered and resampled to a 1km pixel size.  

Landsat TM/ETM+ images with spatial resolution of 28.5m, which acquired in 2004~2006 and 

covered the 25 cities, were used to validate the urban extents extracted by the proposed methods. The 

urban areas were classified by maximum likelihood classifiers based on training samples selected from 

typical urban area. The classification results were resampled into 1 km urban maps.  

Table 1. Description of the data used in this study. 

Data source Product description Acquisition date Spatial resolution 

DMSP-OLS Yearly stable nighttime light composite 2006 1km 

MODIS NDVI Yearly maximal NDVI 2006 1km 

MODIS LST Yearly maximal LST 2006 1km 

Landsat ETM+ 24 images covering 24 cities, bands 1-5 and7 2004~2006 28.5m 

3.  Methods 

This paper proposed two methods of extracting regional urban extents using multiple remote sensing 

data. The first method is classification of different data combinations and the second one is a 

morphological reconstruction based method which combines classification results from different data 

combinations.  

3.1.  Urban extent mapping with different data combinations 

Three different data combinations were used for mapping urban extents in the first method: (1) DMSP-

OLS data and MODIS NDVI data, (2) DMSP-OLS data and MODIS LST data, and (3) DMSP-OLS 

data, MODIS NDVI data and LST data combined.  

Since urban area is the only class of interest in this study, instead of using traditional multi-class 

classifiers, One-Class Support Vector Machine (OCSVM), a recently developed one-class classifier [15-

16], was selected as the classifier. Rather than using training samples of all classes as required by 

conventional multi-class classifiers, the OCSVM only requires training data from one class (i.e., the 

target class) and can focus on the class only. It has been successfully used in mapping of a specific land 

cover types [17-18] and change detection [19]. 

The OCSVM can be viewed as a special case of the regular two-class SVM where all the training 

data lie in the first class (i.e., target class), and the origin is taken as the only member of the second class 

(i.e., outlier class) [16]. The OCSVM first maps input data into a high-dimensional feature space via a 
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kernel function and then iteratively finds the maximal margin hyperplane, which best separates the 

training data from the origin [16].  

The software LIBSVM (version 2.90) [20] that implements the OCSVM algorithm of Scholkopf et 

al. (1999) [16] was modified and used in the present study.  

3.2.  Morphological reconstruction based mapping 

It was found that the classification result using OLS data and NDVI data generally shows more accurate 

extents, while the classification result using OLS data and LST data is more homogeneous inside the 

extracted urban areas. In order to effectively combine these two classification results, a morphological 

reconstruction based method is proposed.  

Morphological reconstruction is a morphological transformation involving two images. One image, 

called marker image, is the starting point for the transformation. The other image, called mask image, 

constrains the transformation. The high points, or peaks, in the marker image specify where processing 

begins. The peaks spread out, or dilate, while being forced to fit within the mask image. The spreading 

processing continues until the image values do not change [21]. 

In this study, the classification result using OLS data and NDVI data was used as the mask image, 

while the classification result using OLS data and LST data was used as the marker image.  

3.3.  Validation 

In order to validate the effectiveness of different data combinations and the proposed methods, Landsat 

TM/ETM+ data from selected cities with different development levels were classified to extract urban 

areas which were then used as reference data.  

The locally-optimized thresholding method [12] was applied to DMSP-OLS image to extract urban 

extent. The obtained results were used as benchmark. In the local-optimized threshold method, an 

optimal DN threshold was determined for each city by matching the urban areas derived from DMSP-

OLS data to Landsat TM/ETM+ classified urban areas as closely as possible.  

To quantify the performance of these methods, we performed accuracy assessments using confusion 

matrix. Two indices, overall accuracy (OA) and Kappa coefficient, were used. The OA and Kappa were 

calculated from the confusion matrix by comparing DMSP-OLS results and the ETM+ results of each 

city. 

4.  Results 

The accuracy assessment (Table 2) showed that the combination of OLS data and LST data obtained a 

relatively low accuracy, compared to other three classification results which produced very similar 

accuracy (OA and Kappa). From the accuracies of individual classes, it was found that the combination 

of OLS data and LST data overestimated the urban areas. The combination of three data results was 

better than the combination of OLS data and NDVI data. The result using morphological reconstruction 

showed a small increased comparing to the result using local threshold method in most cities.  

Figure 1 shows extracted urban areas of the selected 4 cities using different methods and reference 

data from Landsat TM/ETM+ classification results which was aggregated to generate proportional 

settlement images at 1 km pixel size. 

From figure 1, although the results from local thresholding method (figure 1(c)) are homogeneous, 

they overestimate the urban extents, compared with reference data from Landsat TM/ETM+ data. The 

results from combination of OLS data and LST data are also homogeneous, but obviously overestimate 

the urban extents. The remaining three results look very similar. The results from OLS data and NDVI 

data show very similar urban extents to the reference data, which indicates that the inclusion of MODIS 

NDVI data effectively reduces the over glow effect. However, these results are noisy inside the extracted 

urban areas (e.g., Beijing). The combination of all three datasets by the image classification and the 

morphological reconstruction based method produced better results. In particular, the combination of all 

datasets by the morphological reconstruction produces the best results, in terms of both extent and 

homogeneity.  
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In general, the performance of the proposed methods was comparable with that of the local-optimized 

threshold method. Since the optimized thresholds for cities were generated one-by-one according to 

Landsat TM/ETM+ classification results, this method relies on the acquisition of high-resolution data 

of cities investigated, which involves massive and tedious classification. The new methods are more 

efficient and easier for extracting urban extent with comparable accuracy.  

Table 2. Accuracy assessments of different methods of extracting urban areas by city. 

City Local- 

optimized 

threshold 

DMSP-OLS 

and MODIS 

LST 

DMSP-OLS 

and MODIS 

NDVI 

DMSP-OLS, 

MODIS 

NDVI and 

LST 

DMSP-OLS, 

MODIS NDVI and 

LST by the 

Morphological 

reconstruction 

method 

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa 

Beijing 0.95 0.69 0.90 0.54 0.96 0.72 0.96 0.72 0.96 0.72 

Harbin 0.95 0.67 0.86 0.45 0.95 0.67 0.95 0.67 0.95 0.67 

Zhengzhou 0.93 0.62 0.87 0.51 0.93 0.60 0.93 0.60 0.93 0.60 

Shijiazhuang 0.95 0.71 0.88 0.54 0.96 0.74 0.96 0.74 0.96 0.74 

Xi’an 0.88 0.67 0.56 0.25 0.80 0.55 0.82 0.59 0.74 0.42 

Baoding 0.93 0.55 0.91 0.52 0.94 0.55 0.94 0.55 0.94 0.55 

Cangzhou 0.92 0.60 0.89 0.54 0.93 0.60 0.93 0.61 0.93 0.60 

Handan 0.94 0.77 0.87 0.63 0.93 0.71 0.93 0.71 0.93 0.71 

Hengshui 0.96 0.53 0.96 0.50 0.97 0.46 0.97 0.46 0.97 0.46 

Anyang 0.91 0.75 0.79 0.54 0.89 0.66 0.89 0.70 0.89 0.66 

Kaifeng 0.93 0.65 0.92 0.68 0.93 0.64 0.93 0.64 0.93 0.64 

Xinxiang 0.89 0.61 0.76 0.43 0.89 0.63 0.89 0.63 0.89 0.63 

Xuchang 0.93 0.69 0.86 0.57 0.94 0.69 0.94 0.69 0.94 0.69 

Huhehaote 0.89 0.54 0.72 0.33 0.81 0.45 0.80 0.44 0.81 0.45 

Jinan 0.94 0.67 0.80 0.38 0.92 0.63 0.92 0.62 0.92 0.62 

Lanzhou 0.96 0.69 0.86 0.40 0.86 0.39 0.86 0.40 0.86 0.39 

Fushun 0.90 0.55 0.86 0.54 0.92 0.58 0.92 0.59 0.92 0.58 

Shenyang 0.89 0.66 0.85 0.62 0.90 0.66 0.90 0.66 0.90 0.67 

Zibo 0.93 0.52 0.83 0.36 0.93 0.51 0.93 0.51 0.93 0.51 

Taiyuan 0.90 0.54 0.89 0.62 0.90 0.55 0.90 0.56 0.90 0.56 

Xianyang 0.82 0.50 0.66 0.36 0.82 0.50 0.82 0.51 0.82 0.50 

Tianjin 0.92 0.59 0.87 0.54 0.92 0.54 0.92 0.55 0.92 0.55 

Wulumuqi 0.97 0.61 0.93 0.40 0.94 0.50 0.94 0.50 0.94 0.50 

Xining 0.99 0.44 0.98 0.39 0.99 0.44 0.99 0.44 0.99 0.44 

Changchun 0.88 0.59 0.86 0.57 0.88 0.59 0.88 0.60 0.88 0.59 

5.  Conclusion 

This paper proposed two new methods of extracting regional urban extents using DMSP-OLS data, 

MODIS NDVI data and LST data. The result shows that the inclusion of MODIS NDVI data and LST 

data provide complementary information to overcome the overglow effect of DMSP-OLS data. The 

combination of all three datasets produces more accurate results than those of using any two datasets. 

The proposed morphological reconstruction based method achieves the best results in urban extent 

mapping. 

35th International Symposium on Remote Sensing of Environment (ISRSE35) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 17 (2014) 012156 doi:10.1088/1755-1315/17/1/012156

4



 

 

 

 

 

 

 
        Beijing               Haerbin                Zhengzhou              Shijiazhuang 

Figure 1. Urban area extraction results: (a) DMSP-OLS images of selected cities, 

(b) the urban extents from Landsat ETM+ classification, (c) local-optimized 

threshold method, (d) result with combination of DMSP-OLS and MODIS LST 

data, (e) result with combination of DMSP-OLS and MODIS NDVI data, (f) result 

with the combination of DMSP-OLS, MODIS NDVI and LST data, (g) result with 

the combination of DMSP-OLS, MODIS NDVI and LST data by morphological 

reconstruction. 

(a)   

(b)   

(c)   

(d)   

(e)   

(f)   

(g)   
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