This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Effect of nano Si addition on synthesized LTO for lithium battery anode

, , and

Published under licence by IOP Publishing Ltd
, , Citation A Zulfia et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 105 012107 DOI 10.1088/1755-1315/105/1/012107

1755-1315/105/1/012107

Abstract

Li4Ti5O12 or LTO is one of many compounds that could be used as anode component in lithium battery. The most interesting aspect of using LTO as an anode is its long cycle life which is affected by its zero strain property during insertion and extraction of lithium ions. Despite its advantages, LTO still has problem in its capacity value which is limited to 175 mAh/g. Researchers have tried many methods to increase the capacity of LTO, such as making a composite from LTO host. In this composite, nano sized Si is used as additional element because its high theoretical capacity could increase the overall capacity of the LTO composite. In this research, LTO was synthesized by hydrothermal-mechanochemical methods before we mix it with nano Si in slurry making process. The mass variation of nano Si was 1%, 5%, and 10% in wt. XRD and SEM were used for material characterization. For the battery performance testing we used EIS, CV, and CD. This research will explain the effect of Si on the LTO/Si composite performance. From the testing, it is known that the highest capacity was obtained from LTO/Si-10% sample with 216.15 mAh/g, and able to retain 42.76% of its capacity at higher C-rate (4C). The results show that LTO/Si-10% could be used as an alternative for anode component.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.